Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Novikov, Roman Gennadievich

Doctor of physico-mathematical sciences (1998)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail: ,

https://www.mathnet.ru/eng/person22102
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/216913

Publications in Math-Net.Ru Citations
2024
1. R. G. Novikov, “A Holographic Uniqueness Theorem”, Trudy Mat. Inst. Steklova, 325 (2024),  232–237  mathnet  zmath; Proc. Steklov Inst. Math., 325 (2024), 218–223  scopus
2022
2. P. G. Grinevich, R. G. Novikov, “Spectral inequality for Schrödinger's equation with multipoint potential”, Uspekhi Mat. Nauk, 77:6(468) (2022),  69–76  mathnet  mathscinet  zmath; Russian Math. Surveys, 77:6 (2022), 1021–1028  isi  scopus 2
2021
3. P. G. Grinevich, R. G. Novikov, “Transmission eigenvalues for multipoint scatterers”, Eurasian Journal of Mathematical and Computer Applications, 9:4 (2021),  17–25  mathnet  isi  scopus 1
4. R. G. Novikov, “Multipoint formulae for inverse scattering at high energies”, Uspekhi Mat. Nauk, 76:4(460) (2021),  177–178  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 76:4 (2021), 723–725  isi  scopus 3
2020
5. R. G. Novikov, V. N. Sivkin, “Error estimates for phase recovering from phaseless scattering data”, Eurasian Journal of Mathematical and Computer Applications, 8:1 (2020),  44–61  mathnet  isi  scopus 3
6. P. G. Grinevich, R. G. Novikov, “Creation and annihilation of point-potentials using Moutard-type transform in spectral variable”, J. Math. Phys., 61 (2020), 93501, 7 pp.  mathnet  mathscinet  zmath  isi  scopus 2
2019
7. A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Uspekhi Mat. Nauk, 74:3(447) (2019),  3–16  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 74:3 (2019), 373–386  isi  scopus 8
2018
8. R. G. Novikov, “Inverse scattering for the Bethe–Peierls model”, Eurasian Journal of Mathematical and Computer Applications, 6:1 (2018),  52–55  mathnet  isi  scopus 2
9. R. G. Novikov, R. Konopnitskii, A. A. Tsyganenko, “Distortions in IR spectra related to registration conditions: II. The influence of scattering”, Optics and Spectroscopy, 124:5 (2018),  623–627  mathnet  elib; Optics and Spectroscopy, 124:5 (2018), 655–659 6
10. R. G. Novikov, I. A. Taimanov, “Darboux–Moutard transformations and Poincaré–Steklov operators”, Trudy Mat. Inst. Steklova, 302 (2018),  334–342  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 302 (2018), 315–324  isi  scopus 6
2017
11. P. G. Grinevich, R. G. Novikov, “Multipoint scatterers with bound states at zero energy”, TMF, 193:2 (2017),  309–314  mathnet  elib; Theoret. and Math. Phys., 193:2 (2017), 1675–1679  isi  scopus 8
2016
12. F. O. Goncharov, R. G. Novikov, “An analog of Chang inversion formula for weighted Radon transforms in multidimensions”, Eurasian Journal of Mathematical and Computer Applications, 4:2 (2016),  23–32  mathnet
13. P. G. Grinevich, R. G. Novikov, “Generalized Analytic Functions, Moutard-Type Transforms, and Holomorphic Maps”, Funktsional. Anal. i Prilozhen., 50:2 (2016),  81–84  mathnet  mathscinet  elib; Funct. Anal. Appl., 50:2 (2016), 150–152  isi  scopus 6
14. R. G. Novikov, I. A. Taimanov, “Moutard type transformation for matrix generalized analytic functions and gauge transformations”, Uspekhi Mat. Nauk, 71:5(431) (2016),  179–180  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 71:5 (2016), 970–972  isi  scopus 4
2015
15. R. G. Novikov, “Phaseless inverse scattering in the one dimensional case”, Eurasian Journal of Mathematical and Computer Applications, 3:1 (2015),  64–70  mathnet
16. R. G. Novikov, “An iterative approach to non-overdetermined inverse scattering at fixed energy”, Mat. Sb., 206:1 (2015),  131–146  mathnet  mathscinet  zmath  elib; Sb. Math., 206:1 (2015), 120–134  isi  scopus 29
2014
17. R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue”, Funktsional. Anal. i Prilozhen., 48:4 (2014),  74–77  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 48:4 (2014), 295–297  isi  scopus 7
18. R. G. Novikov, “Weighted Radon transforms and first order differential systems on the plane”, Mosc. Math. J., 14:4 (2014),  807–823  mathnet  mathscinet  isi 9
2013
19. M. I. Isaev, R. G. Novikov, “Stability estimates for recovering the potential by the impedance boundary map”, Algebra i Analiz, 25:1 (2013),  37–63  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 25:1 (2014), 23–41  isi 3
20. P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for moltipoint potentials”, Eurasian Journal of Mathematical and Computer Applications, 1:2 (2013),  76–91  mathnet
21. M. I. Isaev, R. G. Novikov, “Reconstruction of a potential from the impedance boundary map”, Eurasian Journal of Mathematical and Computer Applications, 1:1 (2013),  5–28  mathnet
22. R. G. Novikov, I. A. Taimanov, “The Moutard transformation and two-dimensional multipoint delta-type potentials”, Uspekhi Mat. Nauk, 68:5(413) (2013),  181–182  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 68:5 (2013), 957–959  elib  scopus 3
2011
23. R. G. Novikov, “Weighted Radon transforms for which Chang's approximate inversion formula is exact”, Uspekhi Mat. Nauk, 66:2(398) (2011),  237–238  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 66:2 (2011), 442–443  isi  elib  scopus 7
2007
24. P. G. Grinevich, R. G. Novikov, “The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices”, Uspekhi Mat. Nauk, 62:4(376) (2007),  155–156  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 62:4 (2007), 799–801  isi  elib  scopus 7
1999
25. R. G. Novikov, “Approximate Inverse Quantum Scattering at Fixed Energy in Dimension 2”, Trudy Mat. Inst. Steklova, 225 (1999),  301–318  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 225 (1999), 285–302 16
1989
26. R. G. Novikov, G. M. Henkin, “Yang–Mills fields, the Radon–Penrose transform and the Cauchy–Riemann equations”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 54 (1989),  113–196  mathnet  mathscinet  zmath 1
1988
27. R. G. Novikov, “Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$”, Funktsional. Anal. i Prilozhen., 22:4 (1988),  11–22  mathnet  mathscinet  zmath; Funct. Anal. Appl., 22:4 (1988), 263–272  isi 167
1987
28. R. G. Novikov, G. M. Henkin, “Solution of a multidimensional inverse scattering problem on the basis of generalized dispersion relations”, Dokl. Akad. Nauk SSSR, 292:4 (1987),  814–818  mathnet  mathscinet  zmath 3
29. R. G. Novikov, G. M. Henkin, “The $\bar\partial$-equation in the multidimensional inverse scattering problem”, Uspekhi Mat. Nauk, 42:3(255) (1987),  93–152  mathnet  mathscinet  zmath; Russian Math. Surveys, 42:3 (1987), 109–180  isi 105
1986
30. P. G. Grinevich, R. G. Novikov, “Analogues of multisoliton potentials for the two-dimensional Schrödinger operator, and a nonlocal Riemann problem”, Dokl. Akad. Nauk SSSR, 286:1 (1986),  19–22  mathnet  mathscinet  zmath 11
31. R. G. Novikov, “Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude for fixed energy”, Funktsional. Anal. i Prilozhen., 20:3 (1986),  90–91  mathnet  mathscinet  zmath; Funct. Anal. Appl., 20:3 (1986), 246–248  isi 19
32. R. G. Novikov, “Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy”, TMF, 66:2 (1986),  234–240  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 66:2 (1986), 154–158  isi 21
1985
33. P. G. Grinevich, R. G. Novikov, “Analogs of multisoliton potentials for the two-dimensional Schrödinger operator”, Funktsional. Anal. i Prilozhen., 19:4 (1985),  32–42  mathnet  mathscinet  zmath; Funct. Anal. Appl., 19:4 (1985), 276–285  isi 16
1984
34. R. G. Novikov, G. M. Henkin, “Oscillating weakly localized solutions of the Korteweg–de Vries equation”, TMF, 61:2 (1984),  199–213  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 61:2 (1984), 1089–1099  isi 10

2022
35. A. V. Bolsinov, V. M. Buchstaber, A. P. Veselov, P. G. Grinevich, I. A. Dynnikov, V. V. Kozlov, Yu. A. Kordyukov, D. V. Millionshchikov, A. E. Mironov, R. G. Novikov, S. P. Novikov, A. A. Yakovlev, “Iskander Asanovich Taimanov (on his 60th birthday)”, Uspekhi Mat. Nauk, 77:6(468) (2022),  209–218  mathnet  mathscinet; Russian Math. Surveys, 77:6 (2022), 1159–1168  isi  scopus
2019
36. Yu. V. Egorov, A. I. Komech, P. A. Kuchment, E. L. Lakshtanov, V. G. Maz'ya, S. A. Molchanov, R. G. Novikov, M. I. Freidlin, “Boris Rufimovich Vainberg (on his 80th birthday)”, Uspekhi Mat. Nauk, 74:1(445) (2019),  189–194  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 74:1 (2019), 181–186  isi
2017
37. B. Berndtsson, S. V. Kislyakov, R. G. Novikov, V. M. Polterovich, P. L. Polyakov, A. E. Tumanov, A. A. Shananin, C. L. Epstein, “Gennadi Markovich Henkin (obituary)”, Uspekhi Mat. Nauk, 72:3(435) (2017),  170–190  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 72:3 (2017), 547–570  isi 1

Presentations in Math-Net.Ru
1. PSWF-Radon approach to reconstruction from band-limited Hankel transform
R. V. Zaytsev, R. G. Novikov, M. I. Isaev
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 6, 2023 17:05   
2. Multipoint formulas in inverse problems and their numerical implementation
V. N. Sivkin, R. G. Novikov, G. V. Sabinin
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 6, 2023 14:50   
3. Point scatterers and transmission eigenvalues
P. G. Grinevich, R. G. Novikov
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 6, 2023 09:30   
4. A holographic uniqueness theorem
R. G. Novikov
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 5, 2023 12:35   
5. PSWF-Radon approach to super-resolution in Fourier analysis
M. I. Isaev, R. G. Novikov
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 4, 2023 15:25   
6. The Gelfand-Krein-Levitan problem and passive imaging
R. G. Novikov
Seminar on Analysis, Differential Equations and Mathematical Physics
October 14, 2021 18:00
7. Multidimensional inverse scattering problem for the Schrödinger equation
R. G. Novikov
Dynamical Systems and PDEs
February 10, 2021 18:00   
8. Обратная задача рассеяния без фазовой информации
R. G. Novikov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
August 21, 2019 14:00
9. Преобразование Мутара для обобщенных аналитических функций и двумерная обратная задача рассеяния при энергиях выше основного состояния
P. G. Grinevich, R. G. Novikov
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
March 23, 2016 14:00
10. An iterative approach to non-overdetermined inverse scattering at fixed energy
R. G. Novikov

September 2, 2015 16:00   
11. Томография и обратная задача рассеяния. Часть 6
R. G. Novikov
Mathematical Seminar
September 20, 2013 17:00   
12. Томография и обратная задача рассеяния. Часть 5
R. G. Novikov
Mathematical Seminar
September 17, 2013 17:00   
13. Томография и обратная задача рассеяния. Часть 4
R. G. Novikov
Mathematical Seminar
September 13, 2013 17:00   
14. Томография и обратная задача рассеяния. Часть 3
R. G. Novikov
Mathematical Seminar
September 10, 2013 17:00   
15. Томография и обратная задача рассеяния. Часть 2
R. G. Novikov
Mathematical Seminar
September 6, 2013 17:00   
16. Томография и обратная задача рассеяния. Часть 1
R. G. Novikov
Mathematical Seminar
September 3, 2013 17:00   
17. Введение в обратную задачу Гельфанда-Кальдерона
R. G. Novikov
Mathematical Seminar
November 27, 2012 17:00   
18. Обратное рассеяние при фиксированной энергии и приложения
R. G. Novikov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
August 22, 2012 14:00
19. Introduction to the inverse scattering problem for the Schrödinger equation. Lecture 4
R. G. Novikov
Summer School on Geometry and Mathematical Physics 2012
June 29, 2012 09:40   
20. Introduction to the inverse scattering problem for the Schrödinger equation. Lecture 3
R. G. Novikov
Summer School on Geometry and Mathematical Physics 2012
June 28, 2012 14:30   
21. Introduction to the inverse scattering problem for the Schrödinger equation. Lecture 2
R. G. Novikov
Summer School on Geometry and Mathematical Physics 2012
June 27, 2012 14:30   
22. Introduction to the inverse scattering problem for the Schrödinger equation. Lecture 1
R. G. Novikov
Summer School on Geometry and Mathematical Physics 2012
June 26, 2012 11:20   
23. Faddeev eigenfunctions for point potentials in two dimensions
P. G. Grinevich, R. G. Novikov
International conference "Geometrical Methods in Mathematical Physics"
December 17, 2011 12:45

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024