|
This article is cited in 7 scientific papers (total in 7 papers)
Brief communications
Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue
R. G. Novikova, I. A. Taimanovbc, S. P. Tsarevd a École Polytechnique, Centre de Mathématiques Appliquées
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University
d Institute of Space and Information Technologies, Siberian Federal University
Abstract:
By the Moutard transformation method we construct two-dimensional Schrödinger operators with real smooth potentials decaying at infinity and having a multiple positive eigenvalue. These potentials are rational functions of spatial variables and their sines and cosines.
Keywords:
two-dimensional Schrödinger operator, Moutard transformation, positive eigenvalues.
Received: 02.08.2013
Citation:
R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue”, Funktsional. Anal. i Prilozhen., 48:4 (2014), 74–77; Funct. Anal. Appl., 48:4 (2014), 295–297
Linking options:
https://www.mathnet.ru/eng/faa3157https://doi.org/10.4213/faa3157 https://www.mathnet.ru/eng/faa/v48/i4/p74
|
Statistics & downloads: |
Abstract page: | 585 | Full-text PDF : | 192 | References: | 67 | First page: | 26 |
|