Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 4, Pages 74–77
DOI: https://doi.org/10.4213/faa3157
(Mi faa3157)
 

This article is cited in 7 scientific papers (total in 7 papers)

Brief communications

Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue

R. G. Novikova, I. A. Taimanovbc, S. P. Tsarevd

a École Polytechnique, Centre de Mathématiques Appliquées
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University
d Institute of Space and Information Technologies, Siberian Federal University
Full-text PDF (159 kB) Citations (7)
References:
Abstract: By the Moutard transformation method we construct two-dimensional Schrödinger operators with real smooth potentials decaying at infinity and having a multiple positive eigenvalue. These potentials are rational functions of spatial variables and their sines and cosines.
Keywords: two-dimensional Schrödinger operator, Moutard transformation, positive eigenvalues.
Received: 02.08.2013
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 4, Pages 295–297
DOI: https://doi.org/10.1007/s10688-014-0073-9
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.984.5
Language: Russian
Citation: R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue”, Funktsional. Anal. i Prilozhen., 48:4 (2014), 74–77; Funct. Anal. Appl., 48:4 (2014), 295–297
Citation in format AMSBIB
\Bibitem{NovTaiTsa14}
\by R.~G.~Novikov, I.~A.~Taimanov, S.~P.~Tsarev
\paper Two-Dimensional von Neumann--Wigner Potentials with a Multiple Positive Eigenvalue
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 4
\pages 74--77
\mathnet{http://mi.mathnet.ru/faa3157}
\crossref{https://doi.org/10.4213/faa3157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372742}
\zmath{https://zbmath.org/?q=an:06434572}
\elib{https://elibrary.ru/item.asp?id=23421395}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 4
\pages 295--297
\crossref{https://doi.org/10.1007/s10688-014-0073-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346483500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919439594}
Linking options:
  • https://www.mathnet.ru/eng/faa3157
  • https://doi.org/10.4213/faa3157
  • https://www.mathnet.ru/eng/faa/v48/i4/p74
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:586
    Full-text PDF :193
    References:68
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024