Abstract:
We study the simplest explicit formulas for approximate finding the complex scattering amplitude from modulus of the scattering wave function. We obtain detailed error estimates for these formulas in dimensions d=3 and d=2.
Citation:
R. G. Novikov, V. N. Sivkin, “Error estimates for phase recovering from phaseless scattering data”, Eurasian Journal of Mathematical and Computer Applications, 8:1 (2020), 44–61
\Bibitem{NovSiv20}
\by R.~G.~Novikov, V.~N.~Sivkin
\paper Error estimates for phase recovering from phaseless scattering data
\jour Eurasian Journal of Mathematical and Computer Applications
\yr 2020
\vol 8
\issue 1
\pages 44--61
\mathnet{http://mi.mathnet.ru/ejmca150}
\crossref{https://doi.org/10.32523/2306-6172-2020-8-1-44-61}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519815300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084311874}
Linking options:
https://www.mathnet.ru/eng/ejmca150
https://www.mathnet.ru/eng/ejmca/v8/i1/p44
This publication is cited in the following 3 articles:
Thorsten Hohage, Roman G Novikov, Vladimir N Sivkin, “Phase retrieval and phaseless inverse scattering with background information”, Inverse Problems, 40:10 (2024), 105007
R G Novikov, V N Sivkin, “Fixed-distance multipoint formulas for the scattering amplitude from phaseless measurements”, Inverse Problems, 38:2 (2022), 025012
R G Novikov, V N Sivkin, “Phaseless inverse scattering with background information”, Inverse Problems, 37:5 (2021), 055011