Citation:
M. I. Isaev, R. G. Novikov, “Stability estimates for recovering the potential by the impedance boundary map”, Algebra i Analiz, 25:1 (2013), 37–63; St. Petersburg Math. J., 25:1 (2014), 23–41
\Bibitem{IsaNov13}
\by M.~I.~Isaev, R.~G.~Novikov
\paper Stability estimates for recovering the potential by the impedance boundary map
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 1
\pages 37--63
\mathnet{http://mi.mathnet.ru/aa1316}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113427}
\zmath{https://zbmath.org/?q=an:1285.35006}
\elib{https://elibrary.ru/item.asp?id=20730190}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 1
\pages 23--41
\crossref{https://doi.org/10.1090/S1061-0022-2013-01278-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343073800002}
Linking options:
https://www.mathnet.ru/eng/aa1316
https://www.mathnet.ru/eng/aa/v25/i1/p37
This publication is cited in the following 3 articles:
Garcia-Ferrero M.A., Rueland A., Zaton W., “Runge Approximation and Stability Improvement For a Partial Data Calderon Problem For the Acoustic Helmholtz Equation”, Inverse Probl. Imaging, 16:1 (2022), 251
M. Santacesaria, “A Hölder-logarithmic stability estimate for an inverse problem in two dimensions”, J. Inverse Ill-Posed Probl., 23:1 (2015), 51–73
M. I. Isaev, R. G. Novikov, “Effectivized Hölder-logarithmic stability estimates for the Gel'fand inverse problem”, Inverse Problems, 30:9 (2014), 095006, 18 pp.