|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 225, Pages 301–318
(Mi tm728)
|
|
|
|
This article is cited in 16 scientific papers (total in 16 papers)
Approximate Inverse Quantum Scattering at Fixed Energy in Dimension 2
R. G. Novikov CNRS — Laboratoire de Mathématiques Jean Leray,
Département de Mathématiques,
Universite de Nantes
Abstract:
For the Schrödinger equation in dimension 2 we reconstruct the potential $v\in W^{N,1}_{\varepsilon}(\mathbb R^2)$, $\mathbb N\ni N\ge 3$, $\varepsilon>0$ ($N$-times smooth potential) from the scattering amplitude $f$ at fixed energy $E$ up to $O(E^{-(N-2)/2})$ in the uniform norm as $E\to+\infty$.
Received in December 1998
Citation:
R. G. Novikov, “Approximate Inverse Quantum Scattering at Fixed Energy in Dimension 2”, Solitons, geometry, and topology: on the crossroads, Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov, Trudy Mat. Inst. Steklova, 225, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 301–318; Proc. Steklov Inst. Math., 225 (1999), 285–302
Linking options:
https://www.mathnet.ru/eng/tm728 https://www.mathnet.ru/eng/tm/v225/p301
|
|