Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 225, Pages 301–318 (Mi tm728)  

This article is cited in 16 scientific papers (total in 16 papers)

Approximate Inverse Quantum Scattering at Fixed Energy in Dimension 2

R. G. Novikov

CNRS — Laboratoire de Mathématiques Jean Leray, Département de Mathématiques, Universite de Nantes
References:
Abstract: For the Schrödinger equation in dimension 2 we reconstruct the potential vWN,1ε(R2), NN3, ε>0 (N-times smooth potential) from the scattering amplitude f at fixed energy E up to O(E(N2)/2) in the uniform norm as E+.
Received in December 1998
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: R. G. Novikov, “Approximate Inverse Quantum Scattering at Fixed Energy in Dimension 2”, Solitons, geometry, and topology: on the crossroads, Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov, Trudy Mat. Inst. Steklova, 225, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 301–318; Proc. Steklov Inst. Math., 225 (1999), 285–302
Citation in format AMSBIB
\Bibitem{Nov99}
\by R.~G.~Novikov
\paper Approximate Inverse Quantum Scattering at Fixed Energy in Dimension~2
\inbook Solitons, geometry, and topology: on the crossroads
\bookinfo Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov
\serial Trudy Mat. Inst. Steklova
\yr 1999
\vol 225
\pages 301--318
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm728}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1725948}
\zmath{https://zbmath.org/?q=an:0980.81058}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 225
\pages 285--302
Linking options:
  • https://www.mathnet.ru/eng/tm728
  • https://www.mathnet.ru/eng/tm/v225/p301
  • This publication is cited in the following 16 articles:
    1. Dmitriev V K., Rumyantseva O.D., “Features of Solving the Direct and Inverse Scattering Problems For Two Sets of Monopole Scatterers”, J. Inverse Ill-Posed Probl., 29:5 (2021), 775–789  crossref  isi
    2. Rumyantseva O.D., Shurup A.S., Zotov I D., “Possibilities For Separation of Scalar and Vector Characteristics of Acoustic Scatterer in Tomographic Polychromatic Regime”, J. Inverse Ill-Posed Probl., 29:3 (2021), 407–420  crossref  isi
    3. Dmitriev K.V., Rumyantseva O.D., “Features of the Solution of Direct and Inverse Scattering Problems For Inhomogeneities With a Small Wave Size”, Dokl. Phys., 65:9 (2020), 301–307  crossref  isi
    4. A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Russian Math. Surveys, 74:3 (2019), 373–386  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. de Hoop M.V., Lassas M., Santacesaria M., Siltanen S., Tamminen J.P., “Positive-energy D-bar method for acoustic tomography: a computational study”, Inverse Probl., 32:2 (2016), 025003  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Barcelo J.A., Castro C., Reyes J.M., “Numerical approximation of the potential in the two-dimesional inverse scattering problem”, Inverse Probl., 32:1 (2016), 015006  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Santacesaria M., “a Holder-Logarithmic Stability Estimate For An Inverse Problem in Two Dimensions”, J. Inverse Ill-Posed Probl., 23:1 (2015), 51–73  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    8. Novikov R.G., “Formulas For Phase Recovering From Phaseless Scattering Data At Fixed Frequency”, Bull. Sci. Math., 139:8 (2015), 923–936  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    9. Agaltsov A.D., Novikov R.G., “Riemann–Hilbert Problem Approach For Two-Dimensional Flow Inverse Scattering”, J. Math. Phys., 55:10 (2014), 103502  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    10. M. I. Isaev, R. G. Novikov, “Stability estimates for recovering the potential by the impedance boundary map”, St. Petersburg Math. J., 25:1 (2014), 23–41  mathnet  crossref  mathscinet  zmath  isi  elib
    11. Grinevich P.G., Novikov R.G., “Faddeev eigenfunctions for point potentials in two dimensions”, Phys Lett A, 376:12–13 (2012), 1102–1106  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    12. Beilina L., Klibanov M.V., “The philosophy of the approximate global convergence for multidimensional coefficient inverse problems”, Complex Variables and Elliptic Equations, 57:2–4 (2012), 277–299  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Burov V.A., Alekseenko N.V., Rumyantseva O.D., “Multifrequency generalization of the Novikov algorithm for the two–dimensional inverse scattering problem”, Acoustical Physics, 55:6 (2009), 843–856  crossref  adsnasa  isi  elib  scopus  scopus
    14. Novikov R.G., “The partial derivative–approach to monochromatic inverse scattering in three dimensions”, Journal of Geometric Analysis, 18:2 (2008), 612–631  crossref  mathscinet  zmath  isi  scopus
    15. Novikov R.G., “The partial derivative–approachto approximate inverse scattering at fixed energy in three dimensions”, International Mathematics Research Papers, 2005, no. 6, 287–349  crossref  mathscinet  zmath  isi  elib
    16. Novikov R.G., “Formulae and equations for finding scattering data from the Dirichlet–to–Neumann map with nonzero background potential”, Inverse Problems, 21:1 (2005), 257–270  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:534
    Full-text PDF :221
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025