Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 66, Number 2, Pages 234–240 (Mi tmf4619)  

This article is cited in 21 scientific papers (total in 21 papers)

Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy

R. G. Novikov
References:
Abstract: The classical necessary properties of the scattering amplitude (reciprocity and unitarity) are, provided its $L_2$ norm is small, sufficient for the existence of a two-dimensional Schrödinger operator with the given scattering amplitude at fixed energy.
Received: 21.02.1985
English version:
Theoretical and Mathematical Physics, 1986, Volume 66, Issue 2, Pages 154–158
DOI: https://doi.org/10.1007/BF01017767
Bibliographic databases:
Language: Russian
Citation: R. G. Novikov, “Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy”, TMF, 66:2 (1986), 234–240; Theoret. and Math. Phys., 66:2 (1986), 154–158
Citation in format AMSBIB
\Bibitem{Nov86}
\by R.~G.~Novikov
\paper Construction of two-dimensional Schr\"odinger operator with given scattering amplitude at fixed energy
\jour TMF
\yr 1986
\vol 66
\issue 2
\pages 234--240
\mathnet{http://mi.mathnet.ru/tmf4619}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=838277}
\zmath{https://zbmath.org/?q=an:0615.35023}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 66
\issue 2
\pages 154--158
\crossref{https://doi.org/10.1007/BF01017767}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986E417400008}
Linking options:
  • https://www.mathnet.ru/eng/tmf4619
  • https://www.mathnet.ru/eng/tmf/v66/i2/p234
  • This publication is cited in the following 21 articles:
    1. Sergey Kabanikhin, Maxim Shishlenin, Nikita Novikov, Nikita Prokhoshin, “Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations”, Mathematics, 11:21 (2023), 4458  crossref
    2. A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Russian Math. Surveys, 74:3 (2019), 373–386  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Evgeny Lakshtanov, Boris Vainberg, “Recovery of L
      p -potential in the plane”, Journal of Inverse and Ill-posed Problems, 25:5 (2017), 633  crossref
    4. A. D. Agaltsov, R. G. Novikov, “Riemann–Hilbert problem approach for two-dimensional flow inverse scattering”, Journal of Mathematical Physics, 55:10 (2014)  crossref
    5. V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev, “Two-dimensional stationary Schrödinger equation via the ∂¯-dressing method: New exactly solvable potentials, wave functions, and their physical interpretation”, Journal of Mathematical Physics, 51:9 (2010)  crossref
    6. R. G. Novikov, “The $\bar{\partial}$ -Approach to Monochromatic Inverse Scattering in Three Dimensions”, J Geom Anal, 18:2 (2008), 612  crossref
    7. Rob Hagemans, Jean-Sébastien Caux, “Deformed strings in the Heisenberg model”, J. Phys. A: Math. Theor., 40:49 (2007), 14605  crossref
    8. N. V. Alekseenko, “Solution of the Three-Dimensional Inverse Acoustic Scattering Problem on the Basis of the Novikov–Henkin Algorithm”, Acoust. Phys., 51:4 (2005), 367  crossref
    9. V. A. Burov, I. M. Grishina, O. I. Lapshenkina, S. A. Morozov, O. D. Rumyantseva, E. G. Sukhov, “Reconstruction of the fine structure of an acoustic scatterer against the distorting influence of its large-scale inhomogeneities”, Acoust. Phys., 49:6 (2003), 627  crossref
    10. V. A. Burov, O. D. Rumyantseva, “Uniqueness and stability of the solution to an inverse acoustic scattering problem”, Acoust. Phys., 49:5 (2003), 496  crossref
    11. R G Novikov, “On the range characterization for the two-dimensional attenuated x-ray transformation”, Inverse Problems, 18:3 (2002), 677  crossref
    12. P. G. Grinevich, “Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity”, Russian Math. Surveys, 55:6 (2000), 1015–1083  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. S. Starkov, “Transform operators in a two-dimensional inverse problem for a finite domain”, J. Math. Sci. (New York), 91:2 (1998), 2866–2872  mathnet  mathnet  crossref
    14. A.G. Ramm, “Can a constant be the fixed-energy scattering amplitude for an integrable local potential?”, Physics Letters A, 154:1-2 (1991), 35  crossref
    15. R. G. Novikov, “Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$”, Funct. Anal. Appl., 22:4 (1988), 263–272  mathnet  crossref  mathscinet  zmath  isi
    16. V. D. Lipovskii, A. V. Shirokov, “$2+1$ Toda chain. I. Inverse scattering method”, Theoret. and Math. Phys., 75:3 (1988), 555–566  mathnet  crossref  mathscinet  isi
    17. A. P. Katchalov, Ya. V. Kurylev, “Asymptotics of the Jost-function for the two-dimensional Schrödinger operator”, J. Soviet Math., 55:3 (1991), 1712–1717  mathnet  mathnet  crossref
    18. R. G. Novikov, G. M. Henkin, “The $\bar\partial$-equation in the multidimensional inverse scattering problem”, Russian Math. Surveys, 42:3 (1987), 109–180  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    19. P. G. Grinevich, “Rational solitons of the Veselov–Novikov equations are reflectionless two-dimensional potentials at fixed energy”, Theoret. and Math. Phys., 69:2 (1986), 1170–1172  mathnet  crossref  mathscinet  zmath  isi
    20. P. G. Grinevich, S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrödinger operator, the $\bar\partial$-method and nonlinear equations”, Funct. Anal. Appl., 20:2 (1986), 94–103  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :192
    References:74
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025