Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Grigoryan, Martin Gevorgovich

Professor
Doctor of physico-mathematical sciences (1997)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
E-mail:
Keywords: Vilenkin system, convergence, Fourier coefficients.

https://www.mathnet.ru/eng/person13591
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/189128

Publications in Math-Net.Ru Citations
2024
1. L. N. Galoyan, M. G. Grigoryan, “Functions Almost Universal in the Sense of Signs with Respect to the Trigonometric System and the Walsh System”, Mat. Zametki, 115:6 (2024),  935–939  mathnet  mathscinet; Math. Notes, 115:6 (2024), 1030–1034  scopus
2. M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Mat. Sb., 215:6 (2024),  3–28  mathnet  mathscinet  zmath; Sb. Math., 215:6 (2024), 717–742  isi  scopus
2023
3. M. G. Grigoryan, S. V. Konyagin, “On Fourier series in the multiple trigonometric system”, Uspekhi Mat. Nauk, 78:4(472) (2023),  201–202  mathnet  mathscinet  zmath; Russian Math. Surveys, 78:4 (2023), 782–784  isi  scopus 2
2022
4. M. G. Grigoryan, “On the Convergence of Negative-Order Cesàro Means of Fourier and Fourier–Walsh Series”, Mat. Zametki, 112:3 (2022),  474–477  mathnet  mathscinet; Math. Notes, 112:3 (2022), 476–479  scopus
5. M. G. Grigoryan, “On universal Fourier series in the Walsh system”, Sibirsk. Mat. Zh., 63:5 (2022),  1035–1051  mathnet; Siberian Math. J., 63:5 (2022), 868–882 3
6. M. G. Grigoryan, “On Almost Universal Double Fourier Series”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  91–102  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S129–S139  isi  scopus 3
2021
7. M. G. Grigoryan, “On the existence and structure of universal functions”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021),  30–33  mathnet  zmath  elib; Dokl. Math., 103:1 (2021), 23–25  scopus 5
8. M. G. Grigoryan, L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. RAN. Ser. Mat., 85:2 (2021),  73–94  mathnet  zmath  elib; Izv. Math., 85:2 (2021), 241–261  isi  scopus 8
9. M. G. Grigoryan, “On universal Fourier–Walsh series”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021),  45–57  mathnet
10. M. G. Grigoryan, “On unconditional and absolute convergence of the Haar series in the metric of $L^{p}[0,1]$ with $0<p<1$”, Sibirsk. Mat. Zh., 62:4 (2021),  747–757  mathnet  elib; Siberian Math. J., 62:4 (2021), 607–615  isi  scopus
2020
11. M. G. Grigoryan, “Universal Fourier Series”, Mat. Zametki, 108:2 (2020),  296–299  mathnet  mathscinet  elib; Math. Notes, 108:2 (2020), 282–285  isi  scopus 8
12. M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Mat. Sb., 211:6 (2020),  107–131  mathnet  mathscinet  zmath  elib; Sb. Math., 211:6 (2020), 850–874  isi  scopus 13
13. G. G. Gevorkyan, M. G. Grigoryan, “Absolute convergence of the double fourier–franklin series”, Sibirsk. Mat. Zh., 61:3 (2020),  513–527  mathnet  elib; Siberian Math. J., 61:3 (2020), 403–416  isi  scopus 2
14. M. G. Grigoryan, A. L. Ghazaryan, G. G. Kazaryan, “On the uniform convergence of double Furier–Walsh series”, Proceedings of the YSU, Physical and Mathematical Sciences, 54:1 (2020),  20–28  mathnet
2018
15. M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Mat. Sb., 209:1 (2018),  37–57  mathnet  mathscinet  zmath  elib; Sb. Math., 209:1 (2018), 35–55  isi  scopus 15
16. M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Sibirsk. Mat. Zh., 59:5 (2018),  1057–1065  mathnet  elib; Siberian Math. J., 59:5 (2018), 835–842  isi  scopus 2
17. M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, Zap. Nauchn. Sem. POMI, 467 (2018),  34–54  mathnet; J. Math. Sci. (N. Y.), 243:6 (2019), 844–858  scopus 1
2016
18. M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. RAN. Ser. Mat., 80:6 (2016),  65–91  mathnet  mathscinet  zmath  elib; Izv. Math., 80:6 (2016), 1057–1083  isi  scopus 13
19. M. G. Grigoryan, A. A. Sargsyan, “On existence of a universal function for $L^p[0,1]$ with $p\in(0,1)$”, Sibirsk. Mat. Zh., 57:5 (2016),  1021–1035  mathnet  elib; Siberian Math. J., 57:5 (2016), 796–808  isi  scopus 2
2015
20. L. N. Galoyan, M. G. Grigoryan, A. Kh. Kobelyan, “Convergence of Fourier series in classical systems”, Mat. Sb., 206:7 (2015),  55–94  mathnet  mathscinet  zmath  elib; Sb. Math., 206:7 (2015), 941–979  isi  scopus 12
2013
21. M. G. Grigoryan, S. A. Sargsyan, “Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 2,  30–39  mathnet; Russian Math. (Iz. VUZ), 57:2 (2013), 25–33  scopus 1
22. M. G. Grigoryan, V. G. Krotov, “Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System”, Mat. Zametki, 93:2 (2013),  172–178  mathnet  mathscinet  zmath  elib; Math. Notes, 93:2 (2013), 217–223  isi  elib  scopus 11
2012
23. M. G. Grigoryan, “Modifications of functions, Fourier coefficients and nonlinear approximation”, Mat. Sb., 203:3 (2012),  49–78  mathnet  mathscinet  zmath  elib; Sb. Math., 203:3 (2012), 351–379  isi  scopus 20
2008
24. M. G. Grigorian, “On the strengthened $L^1$-greedy property of the Walsh system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  26–37  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 52:5 (2008), 20–31 2
25. M. G. Grigoryan, A. A. Sargsyan, “Non-linear approximation of continuous functions by the Faber-Schauder system”, Mat. Sb., 199:5 (2008),  3–26  mathnet  mathscinet  zmath  elib; Sb. Math., 199:5 (2008), 629–653  isi  scopus 17
2003
26. M. G. Grigoryan, “On the $L^p_\mu$-strong property of orthonormal systems”, Mat. Sb., 194:10 (2003),  77–106  mathnet  mathscinet  zmath; Sb. Math., 194:10 (2003), 1503–1532  isi  scopus 17
2002
27. M. G. Grigoryan, “On an orthonormal system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4,  24–28  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 46:4 (2002), 22–26 1
2001
28. M. G. Grigoryan, A. S. Sarkisyan, “On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces”, Proceedings of the YSU, Physical and Mathematical Sciences, 2001, no. 1,  136–138  mathnet
2000
29. M. G. Grigoryan, “On universality systems in $L^p$, $1\leq p<2$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 5,  19–22  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 44:5 (2000), 17–20 1
1993
30. M. G. Grigoryan, “On some properties of orthogonal systems”, Izv. RAN. Ser. Mat., 57:5 (1993),  75–105  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 43:2 (1994), 261–289  isi 5
1992
31. M. G. Grigoryan, “On certain properties of orthogonal systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10,  80–82  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:10 (1992), 78–80
32. M. G. Grigoryan, “Convergence of Fourier–Laplace series in the $L^p$ metric”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2,  17–23  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:2 (1992), 17–23 1
33. M. G. Grigoryan, “The almost everywhere convergence of fourier series according to complete orthonormal systems”, Mat. Zametki, 51:5 (1992),  35–43  mathnet  mathscinet  zmath; Math. Notes, 51:5 (1992), 447–453  isi 2
1990
34. M. G. Grigoryan, “Convergence of Laplace and Fourier series”, Dokl. Akad. Nauk SSSR, 315:2 (1990),  265–266  mathnet  mathscinet  zmath; Dokl. Math., 42:3 (1991), 736–737 1
35. M. G. Grigoryan, “Convergence of Fourier-Walsh series in the $L^1$ metric and almost everywhere”, Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11,  9–18  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 34:11 (1990), 9–20 4
36. M. G. Grigoryan, “On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere”, Mat. Sb., 181:8 (1990),  1011–1030  mathnet  mathscinet  zmath; Math. USSR-Sb., 70:2 (1991), 445–466  isi 17
1988
37. M. G. Grigoryan, “The representation of measurable functions by usual and multiple series of Legendre polynomials”, Proceedings of the YSU, Physical and Mathematical Sciences, 1988, no. 1,  143–146  mathnet

Presentations in Math-Net.Ru
1. Nonlinear approximations and universal functions
M. G. Grigoryan
International Conference “Nonlinear Approximation and Discretization” dedicated to the 70-th anniversary of Professor V.N. Temlyakov
October 31, 2023 10:00   
2. Функции с универсальным рядом Фурье
M. G. Grigoryan
Seminar on Theory of Functions of Real Variables
April 29, 2022 18:30
3. Existence and structure of universal functions in different sense
M. G. Grigoryan
International Conference "Approximation Theory and Applications" Dedicated to the 100th Anniversary S. B. Stechkin
September 7, 2021 15:00   
4. Nonlinear approximation, Fourier coefficients and modifications of functions
M. Grigoryan
Approximation and discretization
September 2, 2021 15:30   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024