Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 5, Pages 1057–1065
DOI: https://doi.org/10.17377/smzh.2018.59.508
(Mi smj3028)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Fourier–Faber–Schauder series unconditionally divergent in measure

M. G. Grigoryana, A. A. Sargsyanb

a Yerevan State University, Yerevan, Armenia
b Russian-Armenian University, Yerevan, Armenia
Full-text PDF (294 kB) Citations (2)
References:
Abstract: We prove that, for every $\varepsilon\in (0,1)$, there is a measurable set $E\subset[0,1]$ whose measure $|E|$ satisfies the estimate $|E|>1-\varepsilon$ and, for every function $f\in C_{[0,1]}$, there is $\tilde f\in C_{[0,1]}$ coinciding with $f$ on $E$ whose expansion n the Faber–Schauder system diverges in measure after a rearrangement.
Keywords: uniform convergence, Faber–Schauder system, convergence in measure.
Received: 11.12.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 5, Pages 835–842
DOI: https://doi.org/10.1134/S0037446618050087
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Sibirsk. Mat. Zh., 59:5 (2018), 1057–1065; Siberian Math. J., 59:5 (2018), 835–842
Citation in format AMSBIB
\Bibitem{GriSar18}
\by M.~G.~Grigoryan, A.~A.~Sargsyan
\paper The Fourier--Faber--Schauder series unconditionally divergent in measure
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 1057--1065
\mathnet{http://mi.mathnet.ru/smj3028}
\crossref{https://doi.org/10.17377/smzh.2018.59.508}
\elib{https://elibrary.ru/item.asp?id=38637646}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 835--842
\crossref{https://doi.org/10.1134/S0037446618050087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452230400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057477987}
Linking options:
  • https://www.mathnet.ru/eng/smj3028
  • https://www.mathnet.ru/eng/smj/v59/i5/p1057
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :56
    References:48
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024