Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 1, Pages 35–55
DOI: https://doi.org/10.1070/SM8806
(Mi sm8806)
 

This article is cited in 15 scientific papers (total in 15 papers)

The structure of universal functions for $L^p$-spaces, $p\in(0,1)$

M. G. Grigoryana, A. A. Sargsyanb

a Yerevan State University, Armenia
b Russian-Armenian (Slavonic) State University, Yerevan, Armenia
References:
Abstract: The paper sheds light on the structure of functions which are universal for $L^p$-spaces, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients. It is shown that there exists a measurable set $E\subset [0,1]$, whose measure is arbitrarily close to $1$, such that by an appropriate change of values of any function $f\in L^1[0,1]$ outside $E$ a function $\widetilde f\in L^1[0,1]$ can be obtained that is universal for each $L^p[0,1]$-space, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients.
Bibliography: 28 titles.
Keywords: universal function, Fourier coefficients, Walsh system, convergence in a metric.
Received: 27.08.2016 and 27.01.2017
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42C10, 43A15
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Sb. Math., 209:1 (2018), 35–55
Citation in format AMSBIB
\Bibitem{GriSar18}
\by M.~G.~Grigoryan, A.~A.~Sargsyan
\paper The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
\jour Sb. Math.
\yr 2018
\vol 209
\issue 1
\pages 35--55
\mathnet{http://mi.mathnet.ru//eng/sm8806}
\crossref{https://doi.org/10.1070/SM8806}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740295}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209...35G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428795800002}
\elib{https://elibrary.ru/item.asp?id=30762118}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045635016}
Linking options:
  • https://www.mathnet.ru/eng/sm8806
  • https://doi.org/10.1070/SM8806
  • https://www.mathnet.ru/eng/sm/v209/i1/p37
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:650
    Russian version PDF:68
    English version PDF:17
    References:63
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024