Abstract:
We show that, for every number p∈(0,1), there is g∈L1[0,1] (a universal function) that has monotone coefficients ck(g) and the Fourier–Walsh series convergent to g (in the norm of L1[0,1]) such that, for every f∈Lp[0,1], there are numbers δk=±1,0 and an increasing sequence of positive integers Nq such that the series ∑+∞k=0δkck(g)Wk (with {Wk} the Walsh system) and the subsequence σ(α)Nq, α∈(−1,0), of its Cesáro means converge to f in the metric of Lp[0,1].
Keywords:
universal function, Fourier coefficient, Walsh system, convergence in a metric.
Citation:
M. G. Grigoryan, A. A. Sargsyan, “On existence of a universal function for Lp[0,1] with p∈(0,1)”, Sibirsk. Mat. Zh., 57:5 (2016), 1021–1035; Siberian Math. J., 57:5 (2016), 796–808
\Bibitem{GriSar16}
\by M.~G.~Grigoryan, A.~A.~Sargsyan
\paper On existence of a~universal function for $L^p[0,1]$ with~$p\in(0,1)$
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 5
\pages 1021--1035
\mathnet{http://mi.mathnet.ru/smj2803}
\crossref{https://doi.org/10.17377/smzh.2016.57.508}
\elib{https://elibrary.ru/item.asp?id=27380096}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 5
\pages 796--808
\crossref{https://doi.org/10.1134/S0037446616050086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386780100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992387009}
Linking options:
https://www.mathnet.ru/eng/smj2803
https://www.mathnet.ru/eng/smj/v57/i5/p1021
This publication is cited in the following 2 articles:
A. A. Sargsyan, “On the structure of functions, universal for weighted spaces Lpμ[0,1], p≥1”, J. Contemp. Math. Anal.-Armen. Aca., 54:3 (2019), 163–175
M. Grigoryan, T. Grigoryan, A. Sargsyan, “On the universal function for weighted spaces Lpμ[0,1], p≥1”, Banach J. Math. Anal., 12:1 (2018), 104–125