Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 70, Issue 2, Pages 445–466
DOI: https://doi.org/10.1070/SM1991v070n02ABEH002124
(Mi sm1206)
 

This article is cited in 17 scientific papers (total in 17 papers)

On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere

M. G. Grigoryan

Yerevan State University
References:
Abstract: It is proved that if $\{\varphi_n(x)\}$ is a complete orthonormal system of bounded functions and $\varepsilon>0$, then there exists a measurable set $E\subset[0,1]$ with $|E|>1-\varepsilon$ such that
1) for any function $f(x)\in L[0,1]$ there exists a function $g(x)\in L^1[0,1]$ with $g(x)=f(x)$ on $E$ and such that the Fourier series of $g(x)$ in the system $\{\varphi_n(x)\}$ converges in the $L^1$-metric; and
2) there exists a subsequence of natural numbers $m_k\nearrow\infty$ such that for any function $f(x)\in L^1[0,1]$ there exists a function $g(x)\in L^1[0,1]$ such that $g(x)=f(x)$ for $x\in E$, $\displaystyle\lim_{k\to\infty}\sum\limits_{n=1}^{m_k}\alpha_n(g)\varphi_n(x)=g(x)$ almost everywhere on $[0,1]$, and $\{\alpha_n(g)\}\in l_p$ for all $p>2$, where $\displaystyle\alpha_n(g)=\int_0^1g(x)\varphi_n(x)\,dx$, $n=1,2\dots$ .
Received: 23.12.1988 and 27.03.1990
Russian version:
Matematicheskii Sbornik, 1990, Volume 181, Number 8, Pages 1011–1030
Bibliographic databases:
UDC: 517.51
MSC: 42B05, 42A20, 42C20
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, “On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere”, Mat. Sb., 181:8 (1990), 1011–1030; Math. USSR-Sb., 70:2 (1991), 445–466
Citation in format AMSBIB
\Bibitem{Gri90}
\by M.~G.~Grigoryan
\paper On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere
\jour Mat. Sb.
\yr 1990
\vol 181
\issue 8
\pages 1011--1030
\mathnet{http://mi.mathnet.ru/sm1206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1076140}
\zmath{https://zbmath.org/?q=an:0735.42020|0718.42022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..70..445G}
\transl
\jour Math. USSR-Sb.
\yr 1991
\vol 70
\issue 2
\pages 445--466
\crossref{https://doi.org/10.1070/SM1991v070n02ABEH002124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GQ42500008}
Linking options:
  • https://www.mathnet.ru/eng/sm1206
  • https://doi.org/10.1070/SM1991v070n02ABEH002124
  • https://www.mathnet.ru/eng/sm/v181/i8/p1011
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:414
    Russian version PDF:138
    English version PDF:19
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024