|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 34–54
(Mi znsl6565)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$
M. G. Grigoryan Faculty of Physics, Yerevan State University, Yerevan, Armenia
Abstract:
It is proved that for any $0<\epsilon<1$ there exists a measurable set $E\subset[0,1]$ with $|E|>1-\epsilon$ such that for any function $f(x)\in L^1[0,1]$ one can find a function $g(x)\in L^1[0,1]$ equal to $f(x)$ on $E$ such that its Fourier–Haar series converges absolutely in the metric of $L^p(0,1)$, $0<p<1$.
Key words and phrases:
Haar series, modification of functions, absolute convergece in the metric of $L^p(0,1)$, $0<p<1$.
Received: 08.06.2018
Citation:
M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 34–54; J. Math. Sci. (N. Y.), 243:6 (2019), 844–858
Linking options:
https://www.mathnet.ru/eng/znsl6565 https://www.mathnet.ru/eng/znsl/v467/p34
|
Statistics & downloads: |
Abstract page: | 160 | Full-text PDF : | 71 | References: | 28 |
|