Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 3, Pages 413–465
DOI: https://doi.org/10.1070/SM2011v202n03ABEH004151
(Mi sm7652)
 

This article is cited in 11 scientific papers (total in 11 papers)

On a new compactification of moduli of vector bundles on a surface. III: Functorial approach

N. V. Timofeeva

P. G. Demidov Yaroslavl State University
References:
Abstract: A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface (S,L) is constructed. We work over the field k=ˉk of characteristic zero. Families of locally free sheaves on the surface S are completed with locally free sheaves on schemes which are modifications of S. The Gieseker-Maruyama moduli space has a birational morphism onto the new moduli space. We propose the functor for families of pairs ‘polarized scheme-vector bundle’ with moduli space of such type.
Bibliography: 16 titles.
Keywords: moduli space, semistable coherent sheaves, moduli functor, algebraic surface.
Received: 13.11.2009 and 29.06.2010
Bibliographic databases:
UDC: 512.722+512.723
MSC: Primary 14J60; Secondary 14D20, 14M27
Language: English
Original paper language: Russian
Citation: N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465
Citation in format AMSBIB
\Bibitem{Tim11}
\by N.~V.~Timofeeva
\paper On a new compactification of moduli of vector bundles on a surface.
III: Functorial approach
\jour Sb. Math.
\yr 2011
\vol 202
\issue 3
\pages 413--465
\mathnet{http://mi.mathnet.ru/eng/sm7652}
\crossref{https://doi.org/10.1070/SM2011v202n03ABEH004151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2816027}
\zmath{https://zbmath.org/?q=an:1230.14060}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..413T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290671200005}
\elib{https://elibrary.ru/item.asp?id=19066267}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959834202}
Linking options:
  • https://www.mathnet.ru/eng/sm7652
  • https://doi.org/10.1070/SM2011v202n03ABEH004151
  • https://www.mathnet.ru/eng/sm/v202/i3/p107
  • This publication is cited in the following 11 articles:
    1. N. V. Timofeeva, “Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles”, Theoret. and Math. Phys., 212:1 (2022), 984–1000  mathnet  crossref  crossref  mathscinet  adsnasa
    2. N. V. Timofeeva, “Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension”, Math. Notes, 110:4 (2021), 632–637  mathnet  crossref  crossref  isi  elib
    3. N. V. Timofeeva, “Admissible pairs vs Gieseker-Maruyama”, Sb. Math., 210:5 (2019), 731–755  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. V. Baranovsky, “Uhlenbeck compactification as a functor”, Int. Math. Res. Not. IMRN, 2015:23 (2015), 12678–12712  crossref  mathscinet  zmath  isi  scopus
    5. N. V. Timofeeva, “On a morphism of compactifications of moduli scheme of vector bundles”, Sib. elektron. matem. izv., 12 (2015), 577–591  mathnet  crossref
    6. N. V. Timofeeva, “Izomorfizm kompaktifikatsii modulei vektornykh rassloenii: neprivedennye skhemy modulei”, Model. i analiz inform. sistem, 22:5 (2015), 629–647  mathnet  crossref  mathscinet  elib
    7. N. V. Timofeeva, “On an Isomorphism of Compactifications of Moduli Scheme of Vector Bundles”, Model. anal. inf. sist., 19:1 (2015), 37  crossref
    8. N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family”, Sb. Math., 204:3 (2013), 411–437  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. N. V. Timofeeva, “Ob odnom izomorfizme kompaktifikatsii skhemy modulei vektornykh rassloenii”, Model. i analiz inform. sistem, 19:1 (2012), 37–50  mathnet
    11. Markushevich D., Tikhomirov A.S., Trautmann G., “Bubble tree compactification of moduli spaces of vector bundles on surfaces”, Centr. Eur. J. Math., 10:4 (2012), 1331–1355  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:662
    Russian version PDF:226
    English version PDF:21
    References:71
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025