Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 3, Pages 373–411
DOI: https://doi.org/10.1070/SM2011v202n03ABEH004150
(Mi sm7751)
 

This article is cited in 7 scientific papers (total in 7 papers)

The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian

E. A. Kudryavtseva, T. A. Lepskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the integrable Hamiltonian systems
$$ (\mathbb C^2,\operatorname{Re}(dz\wedge dw),H=\operatorname{Re}f(z,w)) $$
with the additional first integral $F=\operatorname{Im}f$ which correspond to the complex Hamiltonian systems $(\mathbb C^2,dz\wedge dw,f(z,w))$ with a hyperelliptic Hamiltonian $f(z,w)=z^2+P_n(w)$, $n\in\mathbb N$. For $n\geqslant3$ the system has incomplete flows on any Lagrangian leaf $f^{-1}(a)$. The topology of the Lagrangian foliation of such systems in a small neighbourhood of any leaf $f^{-1}(a)$ is described in terms of the number $n$ and the combinatorial type of the leaf—the set of multiplicities of the critical points of the function $f$ that belong to the leaf. For odd $n$, a complex analogue of Liouville's theorem is obtained for those systems corresponding to polynomials $P_n(w)$ with simple real roots. In particular, a set of complex canonical variables analogous to action-angle variables is constructed in a small neighbourhood of the leaf $f^{-1}(0)$.
Bibliography: 12 titles.
Keywords: integrable Hamiltonian system, Lagrangian foliation with singularities, leaf-wise equivalence of integrable systems, equivalence of holomorphic functions, Liouville's theorem.
Received: 10.06.2010 and 03.12.2010
Russian version:
Matematicheskii Sbornik, 2011, Volume 202, Number 3, Pages 69–106
DOI: https://doi.org/10.4213/sm7751
Bibliographic databases:
Document Type: Article
UDC: 517.938.5+514.756.4
MSC: Primary 37J05; Secondary 37J35
Language: English
Original paper language: Russian
Citation: E. A. Kudryavtseva, T. A. Lepskii, “The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian”, Mat. Sb., 202:3 (2011), 69–106; Sb. Math., 202:3 (2011), 373–411
Citation in format AMSBIB
\Bibitem{KudLep11}
\by E.~A.~Kudryavtseva, T.~A.~Lepskii
\paper The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian
\jour Mat. Sb.
\yr 2011
\vol 202
\issue 3
\pages 69--106
\mathnet{http://mi.mathnet.ru/sm7751}
\crossref{https://doi.org/10.4213/sm7751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2816026}
\zmath{https://zbmath.org/?q=an:1242.37036}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..373K}
\elib{https://elibrary.ru/item.asp?id=19066266}
\transl
\jour Sb. Math.
\yr 2011
\vol 202
\issue 3
\pages 373--411
\crossref{https://doi.org/10.1070/SM2011v202n03ABEH004150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290671200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959821472}
Linking options:
  • https://www.mathnet.ru/eng/sm7751
  • https://doi.org/10.1070/SM2011v202n03ABEH004150
  • https://www.mathnet.ru/eng/sm/v202/i3/p69
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:584
    Russian version PDF:209
    English version PDF:6
    References:65
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024