Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 7, Pages 1051–1070
DOI: https://doi.org/10.1070/SM2008v199n07ABEH003953
(Mi sm3936)
 

This article is cited in 14 scientific papers (total in 14 papers)

On a new compactification of the moduli of vector bundles on a surface

N. V. Timofeevaab

a P. G. Demidov Yaroslavl State University
b Yaroslavl State Pedagogical University named after K. D. Ushinsky
References:
Abstract: A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed Hilbert polynomial on a smooth projective polarized surface $(S,H)$ defined over a field $k=\bar k$ of characteristic zero is constructed. The families of locally free sheaves on the surface $S$ are completed by locally free sheaves on surfaces that are certain modifications of $S$. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered.
Bibliography: 12 titles.
Received: 15.08.2007 and 13.03.2008
Bibliographic databases:
UDC: 512.722+512.723
Language: English
Original paper language: Russian
Citation: N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070
Citation in format AMSBIB
\Bibitem{Tim08}
\by N.~V.~Timofeeva
\paper On a new compactification of the moduli of vector bundles on a~surface
\jour Sb. Math.
\yr 2008
\vol 199
\issue 7
\pages 1051--1070
\mathnet{http://mi.mathnet.ru//eng/sm3936}
\crossref{https://doi.org/10.1070/SM2008v199n07ABEH003953}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488225}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900006}
\elib{https://elibrary.ru/item.asp?id=20425540}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049171459}
Linking options:
  • https://www.mathnet.ru/eng/sm3936
  • https://doi.org/10.1070/SM2008v199n07ABEH003953
  • https://www.mathnet.ru/eng/sm/v199/i7/p103
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024