Abstract:
We construct a new compactification of the moduli scheme of Gieseker-stable vector bundles having fixed Hilbert polynomial on a smooth projective polarized surface (S,H)(S,H) defined over the field k=C. Families of locally free sheaves on the surface S are completed by locally free sheaves
on surfaces that are certain modifications of S. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. We consider the case when the Gieseker-Maruyama
space is the coarse moduli space.
Bibliography: 16 titles.
\Bibitem{Tim09}
\by N.~V.~Timofeeva
\paper On the new compactification of moduli of vector bundles on a~surface.~II
\jour Sb. Math.
\yr 2009
\vol 200
\issue 3
\pages 405--427
\mathnet{http://mi.mathnet.ru/eng/sm5234}
\crossref{https://doi.org/10.1070/SM2009v200n03ABEH004002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529147}
\zmath{https://zbmath.org/?q=an:1192.14032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..405T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267858800006}
\elib{https://elibrary.ru/item.asp?id=19066117}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650925532}
This publication is cited in the following 13 articles:
N. V. Timofeeva, “Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles”, Theoret. and Math. Phys., 212:1 (2022), 984–1000
N. V. Timofeeva, “Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension”, Math. Notes, 110:4 (2021), 632–637
N. V. Timofeeva, “Admissible pairs vs Gieseker-Maruyama”, Sb. Math., 210:5 (2019), 731–755
N. V. Timofeeva, “On a morphism of compactifications of moduli scheme of vector bundles”, Sib. elektron. matem. izv., 12 (2015), 577–591
N. V. Timofeeva, “Izomorfizm kompaktifikatsii modulei vektornykh rassloenii: neprivedennye skhemy modulei”, Model. i analiz inform. sistem, 22:5 (2015), 629–647
N. V. Timofeeva, “On an Isomorphism of Compactifications of Moduli Scheme of Vector Bundles”, Model. anal. inf. sist., 19:1 (2015), 37
N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153
N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family”, Sb. Math., 204:3 (2013), 411–437
N. V. Timofeeva, “Ob odnom izomorfizme kompaktifikatsii skhemy modulei vektornykh rassloenii”, Model. i analiz inform. sistem, 19:1 (2012), 37–50
Markushevich D., Tikhomirov A.S., Trautmann G., “Bubble tree compactification of moduli spaces of vector bundles on surfaces”, Cent. Eur. J. Math., 10:4 (2012), 1331–1355
M. V. Il'ina, A. V. Timofeeva, V. T. Ivanova, E. I. Burtseva, L. A. Baratova, I. Yu. Sapurina, G. S. Katrukha, “Investigations into the processes of sorption and desorption of polypeptide antibiotics on Taunit multiwalled carbon nanotubes”, Appl Biochem Microbiol, 48:8 (2012), 699
N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface.
III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465
N. V. Timofeeva, “On Degeneration of the Surface in the Fitting Compactification of Moduli of Stable Vector Bundles”, Math. Notes, 90:1 (2011), 142–148