Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 3, Pages 405–427
DOI: https://doi.org/10.1070/SM2009v200n03ABEH004002
(Mi sm5234)
 

This article is cited in 13 scientific papers (total in 13 papers)

On the new compactification of moduli of vector bundles on a surface. II

N. V. Timofeevaab

a P. G. Demidov Yaroslavl State University
b Yaroslavl State Pedagogical University named after K. D. Ushinsky
References:
Abstract: We construct a new compactification of the moduli scheme of Gieseker-stable vector bundles having fixed Hilbert polynomial on a smooth projective polarized surface $(S,H)$ defined over the field $k=\mathbb C$. Families of locally free sheaves on the surface $S$ are completed by locally free sheaves on surfaces that are certain modifications of $S$. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. We consider the case when the Gieseker-Maruyama space is the coarse moduli space.
Bibliography: 16 titles.
Keywords: moduli space, semistable coherent sheaves, pseudofamily, algebraic surface.
Received: 08.04.2008 and 24.11.2008
Russian version:
Matematicheskii Sbornik, 2009, Volume 200, Number 3, Pages 95–118
DOI: https://doi.org/10.4213/sm5234
Bibliographic databases:
UDC: 512.722+512.723
MSC: 14J60
Language: English
Original paper language: Russian
Citation: N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Mat. Sb., 200:3 (2009), 95–118; Sb. Math., 200:3 (2009), 405–427
Citation in format AMSBIB
\Bibitem{Tim09}
\by N.~V.~Timofeeva
\paper On the new compactification of moduli of vector bundles on a~surface.~II
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 3
\pages 95--118
\mathnet{http://mi.mathnet.ru/sm5234}
\crossref{https://doi.org/10.4213/sm5234}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529147}
\zmath{https://zbmath.org/?q=an:1192.14032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..405T}
\elib{https://elibrary.ru/item.asp?id=19066117}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 3
\pages 405--427
\crossref{https://doi.org/10.1070/SM2009v200n03ABEH004002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267858800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650925532}
Linking options:
  • https://www.mathnet.ru/eng/sm5234
  • https://doi.org/10.1070/SM2009v200n03ABEH004002
  • https://www.mathnet.ru/eng/sm/v200/i3/p95
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:523
    Russian version PDF:185
    English version PDF:26
    References:54
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024