Zemskov A.V., Tarlakovskii D.V., “Modelling of rectangular Kirchhoff plate oscillations under unsteady elastodiffusive perturbations”, http://dx.doi.org/10.1007/s00707-020-02879-1, Acta Mechanica, 2021
Вестяк А.В., Земсков А.В., “Модель нестационарных упругодиффузионных колебаний шарнирно закрепленной балки Тимошенко”, DOI: 10.31857/S0572329920030174, Известия российской академии наук. Механика твердого тела, 2020, № 5, 107–119
Afanasieva O.A., Zemskov A.V., “Mechanodiffusion of multicomponent continuum under the action of unsteady volume perturbations”, https://link.springer.com/article/10.1134/S1995080219030028, Lobachevskii Journal of Mathematics, 40:3 (2019), 249-255
Tarlakovskii D.V., Zemskov A.V., “Bulk Greens functions in two-dimensional coupled unsteady problems of elastic diffusion for orthotropic continuum”, https://link.springer.com/article/10.1134/S1995080219030181, Lobachevskii Journal of Mathematics, 40:3 (2019), 375-383
N. A. Zverev, A. V. Zemskov, V. M. Yaganov, “Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations”, Chebyshevskii Sb., 25:2 (2024), 296–317
2.
A. V. Zemskov, D. V. Tarlakovskii, “On the issue of variational formulation of problems of generalized GN-thermoelasticity”, Matem. Mod., 36:5 (2024), 19–31
3.
A. V. Zemskov, D. V. Tarlakovskii, “Sturm–Liouville problem for a one-dimensional thermoelastic operator in cartesian, cylindrical, and spherical coordinate systems”, Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024), 424–442; Comput. Math. Math. Phys., 64:3 (2024), 401–415
2023
4.
A. V. Zemskov, D. V. Tarlakovskii, “Generalized surface Green's functions for an elastic half-space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 4, 27–36
5.
N. V. Grigorevskiy, A. V. Zemskov, A. V. Malashkin, “Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load”, Matem. Mod., 35:8 (2023), 31–50; Math. Models Comput. Simul., 15:1 suppl. (2023), S96–S110
6.
N. A. Zverev, A. V. Zemskov, “Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation”, Matem. Mod., 35:1 (2023), 95–112; Math. Models Comput. Simul., 15:4 (2023), 686–697
N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1, 25–37; Russian Math. (Iz. VUZ), 66:1 (2022), 19–30
N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Modelling one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022), 62–78
A. V. Zemskov, D. V. Tarlakovskii, “Unsteady bending of an orthotropic cantilever Timoshenko beam with allowance for diffusion flux relaxation”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1895–1911; Comput. Math. Math. Phys., 62:11 (2022), 1912–1927
N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady electromagnetic elasticity of piezoelectrics considering diffusion”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 193–204
2018
11.
A. V. Vestyak, S. A. Davydov, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:1 (2018), 183–195
A. V. Zemskov, D. V. Tarlakovskii, “Two-dimensional nonstationary problem of elastic diffusion for an isotropic one-component layer”, Prikl. Mekh. Tekh. Fiz., 56:6 (2015), 102–110; J. Appl. Mech. Tech. Phys., 56:6 (2015), 1023–1030
A. V. Zemskov, D. V. Tarlakovskii, “Two-dimensional unsteady-state problem of elasticity with diffusion for isotropic one-component half-plane”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015), 103–111
2014
14.
S. A. Davydov, A. V. Zemskov, D. V. Tarlakovskii, “An elastic half space under the action of one-dimensional time-dependent diffusion perturbations”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:1 (2014), 70–78
A. R. Gachkevich, A. V. Zemskov, D. V. Tarlakovsky, “The one-dimensional problem of unsteady-related elastic diffusion layer”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013), 52–59
V. A. Vestyak, A. V. Zemskov, I. A. Fedorov, “The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions”, Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012), 50–56