Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 1, Pages 25–37
DOI: https://doi.org/10.26907/0021-3446-2022-1-25-37
(Mi ivm9741)
 

This article is cited in 1 scientific paper (total in 1 paper)

Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation

N. A. Zvereva, A. V. Zemskovab, D. V. Tarlakovskiiab

a Moscow Aviation Institute (National Research University), 4 Volokolamskoe high., Moscow, 125993 Russia
b Institute of Mechanics Lomonosov Moscow State University, 1 Michurinsky Ave., Moscow, 119192 Russia
References:
Abstract: We considered the one-dimensional problem of stress-strain state determining of a orthotropic multicomponent cylinder. The cylinder is affected by unsteady surface elastic diffusive perturbations. The coupled system of elastic diffusion equations in the polar coordinate system is used as a mathematical model. Diffusion relaxation effects, implying finite rates of diffusion flux propagation, are taken into account.
The problem solution is sought in the integral form and is represented as convolutions of Green's functions with functions defining surface elastodiffusive perturbations. We used the Laplace transform by time, and Fourier series expansion in first kind Bessel functions to find the Green's functions. The Laplace transform inversion is done analytically due to residues and operational calculus tables. An analytical solution to the problem is obtained.
Numerical study of the mechanical and diffusion fields interaction in a continuous orthotropic cylinder is performed. We used three-component material as an example. The cylinder is under pressure uniformly distributed over the surface. We used three-component material as an example.
Keywords: elastic diffusion, Laplace transform, Fourier series, Green's function, polar-symmetric problem, unsteady problem, Bessel function.
Received: 04.03.2021
Revised: 04.03.2021
Accepted: 30.03.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 1, Pages 19–30
DOI: https://doi.org/10.3103/S1066369X2201008X
Bibliographic databases:
Document Type: Article
UDC: 539.3: 539.8
Language: Russian
Citation: N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1, 25–37; Russian Math. (Iz. VUZ), 66:1 (2022), 19–30
Citation in format AMSBIB
\Bibitem{ZveZemTar22}
\by N.~A.~Zverev, A.~V.~Zemskov, D.~V.~Tarlakovskii
\paper Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 1
\pages 25--37
\mathnet{http://mi.mathnet.ru/ivm9741}
\crossref{https://doi.org/10.26907/0021-3446-2022-1-25-37}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3601949}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 1
\pages 19--30
\crossref{https://doi.org/10.3103/S1066369X2201008X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9741
  • https://www.mathnet.ru/eng/ivm/y2022/i1/p25
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024