Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 11, Pages 1895–1911
DOI: https://doi.org/10.31857/S004446692211014X
(Mi zvmmf11475)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Unsteady bending of an orthotropic cantilever Timoshenko beam with allowance for diffusion flux relaxation

A. V. Zemskovab, D. V. Tarlakovskiiab

a Moscow Aviation Institute (National Research University), 125993, Moscow, Russia
b Research Institute of Mechanics, Moscow State University, 119192, Moscow, Russia
Citations (1)
Abstract: The problem of unsteady bending of an elastic diffusion orthotropic cantilever Timoshenko beam under loading applied to its free end is considered. The model takes into account that the velocity of propagation of diffusion perturbations is finite due to diffusion flux relaxation. The elastic diffusion processes are described by a coupled system of equations for the Timoshenko beam with allowance for diffusion. A solution of the problem is sought by the method of equivalent boundary conditions. For this purpose, an auxiliary problem is considered, whose solution is obtained by applying the Laplace integral transform in time and trigonometric Fourier series expansions in space. Next, relations connecting the right-hand sides of the boundary conditions of the original and auxiliary problems are constructed. These relations represent a system of Volterra integral equations of the first kind. The system is solved numerically by applying quadrature rules. For an orthotropic beam made of a three-component material, the interaction of unsteady mechanical and diffusion fields is numerically analyzed. Finally, the main conclusions concerning the coupling effect of the fields on the stress-strain state and mass transfer in the beam are given.
Key words: unsteady elastic diffusion, Timoshenko beam, cantilever bending, unsteady problems, Laplace transform, method of equivalent boundary conditions.
Received: 17.03.2022
Revised: 25.06.2022
Accepted: 07.07.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 11, Pages 1912–1927
DOI: https://doi.org/10.1134/S0965542522110124
Bibliographic databases:
Document Type: Article
UDC: 531.36
Language: Russian
Citation: A. V. Zemskov, D. V. Tarlakovskii, “Unsteady bending of an orthotropic cantilever Timoshenko beam with allowance for diffusion flux relaxation”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1895–1911; Comput. Math. Math. Phys., 62:11 (2022), 1912–1927
Citation in format AMSBIB
\Bibitem{ZemTar22}
\by A.~V.~Zemskov, D.~V.~Tarlakovskii
\paper Unsteady bending of an orthotropic cantilever Timoshenko beam with allowance for diffusion flux relaxation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 11
\pages 1895--1911
\mathnet{http://mi.mathnet.ru/zvmmf11475}
\crossref{https://doi.org/10.31857/S004446692211014X}
\elib{https://elibrary.ru/item.asp?id=49455083}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 11
\pages 1912--1927
\crossref{https://doi.org/10.1134/S0965542522110124}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11475
  • https://www.mathnet.ru/eng/zvmmf/v62/i11/p1895
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024