Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2022, Volume 26, Number 1, Pages 62–78
DOI: https://doi.org/10.14498/vsgtu1880
(Mi vsgtu1880)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mechanics of Solids

Modelling one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations

N. A. Zvereva, A. V. Zemskovab, D. V. Tarlakovskiiab

a Moscow Aviation Institute (National Research University), Moscow, 125993, Russian Federation
b Lomonosov Moscow State University, Institute of Mechanics, Moscow, 119192, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: A polar-symmetric elastic diffusion problem is considered for an orthotropic multicomponent homogeneous cylinder under uniformly distributed radial unsteady volumetric perturbations. Coupled elastic diffusion equations in a cylindrical coordinate system is used as a mathematical model. The model takes into account a relaxation of diffusion effects implying finite propagation speed of diffusion perturbations.
The solution of the problem is obtained in the integral convolution form of Green's functions with functions specifying volumetric perturbations. The integral Laplace transform in time and the expansion into the Fourier series by the special Bessel functions are used to find the Green's functions. The theory of residues and tables of operational calculus are used for inverse Laplace transform.
A calculus example based on a three-component material, in which two components are independent, is considered. The study of the mechanical and diffusion fields interaction in a solid orthotropic cylinder is carried out.
Keywords: elastic diffusion, Laplace transform, Fourier series, Green's functions, polar symmetric problems, unsteady problems, Bessel functions, cylinder.
Received: August 26, 2021
Revised: December 26, 2021
Accepted: January 17, 2022
First online: March 31, 2022
Bibliographic databases:
Document Type: Article
UDC: 539.3
MSC: 74B05, 74N99
Language: Russian
Citation: N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Modelling one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022), 62–78
Citation in format AMSBIB
\Bibitem{ZveZemTar22}
\by N.~A.~Zverev, A.~V.~Zemskov, D.~V.~Tarlakovskii
\paper Modelling one-dimensional elastic diffusion processes in~an~orthotropic solid cylinder under unsteady volumetric perturbations
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2022
\vol 26
\issue 1
\pages 62--78
\mathnet{http://mi.mathnet.ru/vsgtu1880}
\crossref{https://doi.org/10.14498/vsgtu1880}
\elib{https://elibrary.ru/item.asp?id=48308998}
\edn{https://elibrary.ru/FSTMLU}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1880
  • https://www.mathnet.ru/eng/vsgtu/v226/i1/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :118
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024