Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 4(1), Pages 52–59
DOI: https://doi.org/10.18500/1816-9791-2013-13-4-52-59
(Mi isu440)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mechanics

The one-dimensional problem of unsteady-related elastic diffusion layer

A. R. Gachkevicha, A. V. Zemskovb, D. V. Tarlakovskyc

a Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Ukraine, 79060, L'vov, Naukova st., 3b
b Moscow Aviation Institute (State University of Aerospace Technologies), Russia, 125993, Moscow, GSP-3, A-80, Volokolamskoe Shosse, 4
c Moscow Aviation Institute (State University of Aerospace Technologies), Russia, 125993, Moscow, GSP-3, A-80, Volokolamskoe Shosse, 4
Full-text PDF (707 kB) Citations (5)
References:
Abstract: The problem of determining the stress strain state of an elastic medium, taking into account the structural changes caused by the presence of diffusion fluxes. The influence of diffusion processes on the stress-strain state of the environment is taken into account by using the locally equilibrium model of thermoelastic diffusion, which includes the coupled system of equations of motion of an elastic body and the equations of heat and mass transfer. For solutions used decompositions of the unknown functions in Fourier series and then applying the integral Laplace transform with respect to time. We construct a fundamental solution of the problem. For examples the cases where the diffusion flux at the boundary is constant, or decays exponentially are considered.
Key words: elastic diffusion, time-dependent problems, Fourier series, Laplace transform.
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: A. R. Gachkevich, A. V. Zemskov, D. V. Tarlakovsky, “The one-dimensional problem of unsteady-related elastic diffusion layer”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013), 52–59
Citation in format AMSBIB
\Bibitem{GacZemTar13}
\by A.~R.~Gachkevich, A.~V.~Zemskov, D.~V.~Tarlakovsky
\paper The one-dimensional problem of unsteady-related elastic diffusion layer
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 4(1)
\pages 52--59
\mathnet{http://mi.mathnet.ru/isu440}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-4-52-59}
Linking options:
  • https://www.mathnet.ru/eng/isu440
  • https://www.mathnet.ru/eng/isu/v13/i6/p52
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :81
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024