Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Antonova, Tat'yana Vladimirovna

Statistics Math-Net.Ru
Total publications: 33
Scientific articles: 33

Number of views:
This page:2183
Abstract pages:10619
Full texts:2991
References:1769
Head Scientist Researcher
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person30763
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/624652

Publications in Math-Net.Ru Citations
2023
1. A. L. Ageev, T. V. Antonova, “On the localization of fractal discontinuity lines from noisy data”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9,  27–44  mathnet
2. A. L. Ageev, T. V. Antonova, “A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  10–22  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S19–S31  scopus
2022
3. A. L. Ageev, T. V. Antonova, “Approximation of the Normal to the Discontinuity Lines of a Noisy Function”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  7–23  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S12–S29  isi  scopus
2021
4. A. L. Ageev, T. V. Antonova, “Algorithms for localizing discontinuity lines with a new type of averaging”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  5–18  mathnet  elib
2020
5. A. L. Ageev, T. V. Antonova, “New accuracy estimates for methods for localizing discontinuity lines of a noisy function”, Sib. Zh. Vychisl. Mat., 23:4 (2020),  351–364  mathnet; Num. Anal. Appl., 13:4 (2020), 293–305  isi 3
2019
6. A. L. Ageev, T. V. Antonova, “Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 7,  3–14  mathnet; Russian Math. (Iz. VUZ), 63:7 (2019), 1–11  isi  scopus 1
7. A. L. Ageev, T. V. Antonova, “Estimates of characteristics of localization methods for discontinuities of the first kind of a noisy function”, Sib. Zh. Ind. Mat., 22:1 (2019),  3–12  mathnet  elib; J. Appl. Industr. Math., 13:1 (2019), 1–10  scopus 1
8. A. L. Ageev, T. V. Antonova, “On the localization of nonsmooth discontinuity lines of a function of two variables”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  9–23  mathnet  elib 2
2018
9. A. L. Ageev, T. V. Antonova, “On the problem of global localization of discontinuity lines for a function of two variables”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  12–23  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S1–S12  isi 7
2017
10. A. L. Ageev, T. V. Antonova, “Localization of boundaries for subsets of discontinuity points of noisy function”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 11,  13–19  mathnet; Russian Math. (Iz. VUZ), 61:11 (2017), 10–15  isi  scopus
11. A. L. Ageev, T. V. Antonova, “A discrete algorithm for the localization of lines of discontinuity of a two-variable function”, Sib. Zh. Ind. Mat., 20:4 (2017),  3–12  mathnet  elib; J. Appl. Industr. Math., 11:4 (2017), 463–471  scopus 5
12. A. L. Ageev, T. V. Antonova, “High accuracy algorithms for approximation of discontinuity lines of a noisy function”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  10–21  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 1–11  isi 2
2016
13. D. V. Kurlikovskii, A. L. Ageev, T. V. Antonova, “Research of a threshold (correlation) method and application for localization of singularities”, Sib. Èlektron. Mat. Izv., 13 (2016),  829–848  mathnet 1
14. A. L. Ageev, T. V. Antonova, “Discretization of a new method for localizing discontinuity lines of a noisy two-variable function”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  8–17  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 4–13  isi  scopus
2015
15. A. L. Ageev, T. V. Antonova, “Methods for the approximating the discontinuity lines of a noisy function of two variables with countably many singularities”, Sib. Zh. Ind. Mat., 18:2 (2015),  3–11  mathnet  mathscinet  elib; J. Appl. Industr. Math., 9:3 (2015), 297–305 3
16. T. V. Antonova, “Methods of identifying a parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities”, Sib. Zh. Vychisl. Mat., 18:2 (2015),  107–120  mathnet  mathscinet  elib; Num. Anal. Appl., 8:2 (2015), 89–100  scopus 1
17. A. L. Ageev, T. V. Antonova, “On discretization of methods for localization of singularities a noisy function”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  3–13  mathnet  mathscinet  elib 2
2012
18. A. L. Ageev, T. V. Antonova, “Approximation of discontinuity lines of a noisy function of two variables”, Sib. Zh. Ind. Mat., 15:1 (2012),  3–13  mathnet  mathscinet; J. Appl. Industr. Math., 6:3 (2012), 269–279 13
19. T. V. Antonova, “Localization method for lines of discontinuity of approximately defined function of two variables”, Sib. Zh. Vychisl. Mat., 15:4 (2012),  345–357  mathnet  elib; Num. Anal. Appl., 5:4 (2012), 285–296  scopus 12
20. A. L. Ageev, T. V. Antonova, “On the localization of singularities of the first kind for a function of bounded variation”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  56–68  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 13–25  isi  scopus 10
2011
21. A. L. Ageev, T. V. Antonova, “A method for the localization of singularities of a solution to a convolution-type equation of the first kind with a step kernel”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 7,  3–12  mathnet  mathscinet; Russian Math. (Iz. VUZ), 55:7 (2011), 1–8  scopus
22. A. L. Ageev, T. V. Antonova, “On ill-posed problems of localization of singularities”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  30–45  mathnet  elib 12
2010
23. T. V. Antonova, “New methods for localizing discontinuities of a noisy function”, Sib. Zh. Vychisl. Mat., 13:4 (2010),  375–386  mathnet; Num. Anal. Appl., 3:4 (2010), 306–316  scopus 12
2009
24. T. V. Antonova, “Regularizing algorithms for localizing the breakpoints of a noisy function”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:1 (2009),  44–58  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S24–S39  isi 4
2008
25. A. L. Ageev, T. V. Antonova, “Regularizing algorithms for detecting discontinuities in ill-posed problems”, Zh. Vychisl. Mat. Mat. Fiz., 48:8 (2008),  1362–1370  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 48:8 (2008), 1284–1292  isi  scopus 13
2007
26. A. L. Ageev, T. V. Antonova, “Problem on separation of singularities”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 11,  3–9  mathnet  mathscinet; Russian Math. (Iz. VUZ), 51:11 (2007), 1–7 12
2004
27. A. L. Ageev, T. V. Antonova, T. Y. Reich, C. Hennig, “A method of separating functionals for extracting of a local atomic structure”, Matem. Mod., 16:10 (2004),  81–92  mathnet  zmath 1
28. A. L. Ageev, T. V. Antonova, E. N. Bessonova, V. V. Vasin, “Direct and inverse problems of oblique radiosounding of ionosphere with waveguids”, Matem. Mod., 16:3 (2004),  22–32  mathnet  zmath 1
2002
29. A. L. Ageev, T. V. Antonova, E. N. Bessonova, V. V. Vasin, V. M. Markushevich, “Algorithms for solving direct and inverse problems of oblique radio-sounding ionosphere”, Matem. Mod., 14:11 (2002),  23–32  mathnet  zmath 2
30. T. V. Antonova, “Solving equations of the first kind on classes of functions with singularities”, Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  147–188  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2002no. , suppl. 1, S145–S189 9
2001
31. T. V. Antonova, “Reconstruction of a function with a finite number of discontinuities of the first kind from noisy data”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 7,  65–68  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 45:7 (2001), 63–66 13
2000
32. T. V. Antonova, “On the solution of integral equations of the first kind nonlinear in parameter in classes of distributions”, Zh. Vychisl. Mat. Mat. Fiz., 40:6 (2000),  819–831  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:6 (2000), 781–792 6
1996
33. A. L. Ageev, T. V. Antonova, E. V. Voronina, “Methods for parametric errors suppression under solution integral equations of the first kind”, Matem. Mod., 8:12 (1996),  110–124  mathnet  mathscinet  zmath 3

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024