Abstract:
A function of two variables with the lines of discontinuity of the first kind is considered. It is assumed
that outside discontinuity lines the function to be measured is smooth and has a limited partial derivative.
Instead of the accurate function its approximation in $L_2$ and perturbation level are known. The problem in
question belongs to the class of nonlinear ill-posed problems, for whose solution it is required to construct
regularizing algorithms. We propose a reduced theoretical approach to solving the problem of localizing the
discontinuity lines of the function that is noisy in the space $L_2$. This is done in the case when conditions of
an exact function are imposed “in the small”. Methods of averaging have been constructed, the estimations of
localizing the line (in the small) have been obtained.
Key words:
ill-posed problems, localization of singularities, line of discontinuity, regularization.
Citation:
T. V. Antonova, “Localization method for lines of discontinuity of approximately defined function of two variables”, Sib. Zh. Vychisl. Mat., 15:4 (2012), 345–357; Num. Anal. Appl., 5:4 (2012), 285–296
\Bibitem{Ant12}
\by T.~V.~Antonova
\paper Localization method for lines of discontinuity of approximately defined function of two variables
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 4
\pages 345--357
\mathnet{http://mi.mathnet.ru/sjvm485}
\elib{https://elibrary.ru/item.asp?id=20495040}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 4
\pages 285--296
\crossref{https://doi.org/10.1134/S1995423912040015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870459853}
Linking options:
https://www.mathnet.ru/eng/sjvm485
https://www.mathnet.ru/eng/sjvm/v15/i4/p345
This publication is cited in the following 12 articles:
A. L. Ageev, T. V. Antonova, “O lokalizatsii fraktalnykh linii razryva po zashumlennym dannym”, Izv. vuzov. Matem., 2023, no. 9, 27–44
A. L. Ageev, T. V. Antonova, “On the Localization of Fractal Lines of Discontinuity from Noisy Data”, Russ Math., 67:9 (2023), 23
A. L. Ageev, T. V. Antonova, “Algoritmy lokalizatsii linii razryva s novym tipom usredneniya”, Tr. IMM UrO RAN, 27, no. 4, 2021, 5–18
A. L. Ageev, T. V. Antonova, “New accuracy estimates for methods for localizing
discontinuity lines of a noisy function”, Num. Anal. Appl., 13:4 (2020), 293–305
A. L. Ageev, T. V. Antonova, “O lokalizatsii negladkikh linii razryva funktsii dvukh peremennykh”, Tr. IMM UrO RAN, 25, no. 3, 2019, 9–23
A. L. Ageev, T. V. Antonova, “On the problem of global localization of discontinuity lines for a function of two variables”, Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S1–S12
A. L. Ageev, T. V. Antonova, “High accuracy algorithms for approximation of discontinuity lines of a noisy function”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 1–11
A. L. Ageev, T. V. Antonova, “A discrete algorithm for the localization of lines of discontinuity of a two-variable function”, J. Appl. Industr. Math., 11:4 (2017), 463–471
A. L. Ageev, T. V. Antonova, “Discretization of a new method for localizing discontinuity lines of a noisy two-variable function”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 4–13
D. V. Kurlikovskii, A. L. Ageev, T. V. Antonova, “Issledovanie porogovogo (korrelyatsionnogo) metoda i ego prilozhenie k lokalizatsii osobennostei”, Sib. elektron. matem. izv., 13 (2016), 829–848
A. L. Ageev, T. V. Antonova, “O diskretizatsii metodov lokalizatsii osobennostei zashumlennoi funktsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 3–13
A. L. Ageev, T. V. Antonova, “Methods for the approximating the discontinuity lines of a noisy function of two variables with countably many singularities”, J. Appl. Industr. Math., 9:3 (2015), 297–305