Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2012, Volume 15, Number 4, Pages 345–357 (Mi sjvm485)  

This article is cited in 12 scientific papers (total in 12 papers)

Localization method for lines of discontinuity of approximately defined function of two variables

T. V. Antonova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: A function of two variables with the lines of discontinuity of the first kind is considered. It is assumed that outside discontinuity lines the function to be measured is smooth and has a limited partial derivative. Instead of the accurate function its approximation in $L_2$ and perturbation level are known. The problem in question belongs to the class of nonlinear ill-posed problems, for whose solution it is required to construct regularizing algorithms. We propose a reduced theoretical approach to solving the problem of localizing the discontinuity lines of the function that is noisy in the space $L_2$. This is done in the case when conditions of an exact function are imposed “in the small”. Methods of averaging have been constructed, the estimations of localizing the line (in the small) have been obtained.
Key words: ill-posed problems, localization of singularities, line of discontinuity, regularization.
Received: 31.05.2011
Revised: 27.09.2011
English version:
Numerical Analysis and Applications, 2012, Volume 5, Issue 4, Pages 285–296
DOI: https://doi.org/10.1134/S1995423912040015
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: T. V. Antonova, “Localization method for lines of discontinuity of approximately defined function of two variables”, Sib. Zh. Vychisl. Mat., 15:4 (2012), 345–357; Num. Anal. Appl., 5:4 (2012), 285–296
Citation in format AMSBIB
\Bibitem{Ant12}
\by T.~V.~Antonova
\paper Localization method for lines of discontinuity of approximately defined function of two variables
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 4
\pages 345--357
\mathnet{http://mi.mathnet.ru/sjvm485}
\elib{https://elibrary.ru/item.asp?id=20495040}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 4
\pages 285--296
\crossref{https://doi.org/10.1134/S1995423912040015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870459853}
Linking options:
  • https://www.mathnet.ru/eng/sjvm485
  • https://www.mathnet.ru/eng/sjvm/v15/i4/p345
  • This publication is cited in the following 12 articles:
    1. A. L. Ageev, T. V. Antonova, “O lokalizatsii fraktalnykh linii razryva po zashumlennym dannym”, Izv. vuzov. Matem., 2023, no. 9, 27–44  mathnet  crossref
    2. A. L. Ageev, T. V. Antonova, “On the Localization of Fractal Lines of Discontinuity from Noisy Data”, Russ Math., 67:9 (2023), 23  crossref
    3. A. L. Ageev, T. V. Antonova, “Algoritmy lokalizatsii linii razryva s novym tipom usredneniya”, Tr. IMM UrO RAN, 27, no. 4, 2021, 5–18  mathnet  crossref  elib
    4. A. L. Ageev, T. V. Antonova, “New accuracy estimates for methods for localizing discontinuity lines of a noisy function”, Num. Anal. Appl., 13:4 (2020), 293–305  mathnet  crossref  crossref  isi
    5. A. L. Ageev, T. V. Antonova, “O lokalizatsii negladkikh linii razryva funktsii dvukh peremennykh”, Tr. IMM UrO RAN, 25, no. 3, 2019, 9–23  mathnet  crossref  elib
    6. A. L. Ageev, T. V. Antonova, “On the problem of global localization of discontinuity lines for a function of two variables”, Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S1–S12  mathnet  crossref  crossref  isi  elib
    7. A. L. Ageev, T. V. Antonova, “High accuracy algorithms for approximation of discontinuity lines of a noisy function”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 1–11  mathnet  crossref  crossref  isi  elib
    8. A. L. Ageev, T. V. Antonova, “A discrete algorithm for the localization of lines of discontinuity of a two-variable function”, J. Appl. Industr. Math., 11:4 (2017), 463–471  mathnet  crossref  crossref  elib
    9. A. L. Ageev, T. V. Antonova, “Discretization of a new method for localizing discontinuity lines of a noisy two-variable function”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 4–13  mathnet  crossref  crossref  mathscinet  isi  elib
    10. D. V. Kurlikovskii, A. L. Ageev, T. V. Antonova, “Issledovanie porogovogo (korrelyatsionnogo) metoda i ego prilozhenie k lokalizatsii osobennostei”, Sib. elektron. matem. izv., 13 (2016), 829–848  mathnet  crossref  isi
    11. A. L. Ageev, T. V. Antonova, “O diskretizatsii metodov lokalizatsii osobennostei zashumlennoi funktsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 3–13  mathnet  mathscinet  elib
    12. A. L. Ageev, T. V. Antonova, “Methods for the approximating the discontinuity lines of a noisy function of two variables with countably many singularities”, J. Appl. Industr. Math., 9:3 (2015), 297–305  mathnet  crossref  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :102
    References:87
    First page:17
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025