Abstract:
We consider an ill-posed problem for the localization of lines of discontinuity. It is assumed that, instead of the exact function f, we know the values at the points of the uniform grid of the mean squares of the disturbed function fδ, ‖f−fδ‖L2(R2)⩽δ, and the level of the error δ. We construct an algorithm for the localization of lines of discontinuity, prove its convergence with approximation accuracy estimates whose order coincides with that of the estimates obtained earlier by the authors for the case when the function itself is given instead of the mean values of fδ. We also justify estimates for an important characteristic of the algorithm, separability threshold.
Keywords:
ill-posed problem, regularization method, line of discontinuity, discretization, separability threshold.
Citation:
A. L. Ageev, T. V. Antonova, “A discrete algorithm for the localization of lines of discontinuity of a two-variable function”, Sib. Zh. Ind. Mat., 20:4 (2017), 3–12; J. Appl. Industr. Math., 11:4 (2017), 463–471
\Bibitem{AgeAnt17}
\by A.~L.~Ageev, T.~V.~Antonova
\paper A discrete algorithm for the localization of lines of discontinuity of a~two-variable function
\jour Sib. Zh. Ind. Mat.
\yr 2017
\vol 20
\issue 4
\pages 3--12
\mathnet{http://mi.mathnet.ru/sjim973}
\crossref{https://doi.org/10.17377/sibjim.2017.20.401}
\elib{https://elibrary.ru/item.asp?id=32662939}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 4
\pages 463--471
\crossref{https://doi.org/10.1134/S1990478917040019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036464807}
Linking options:
https://www.mathnet.ru/eng/sjim973
https://www.mathnet.ru/eng/sjim/v20/i4/p3
This publication is cited in the following 5 articles:
A. L. Ageev, T. V. Antonova, “O lokalizatsii fraktalnykh linii razryva po zashumlennym dannym”, Izv. vuzov. Matem., 2023, no. 9, 27–44
A. L. Ageev, T. V. Antonova, “On the Localization of Fractal Lines of Discontinuity from Noisy Data”, Russ Math., 67:9 (2023), 23
A. L. Ageev, T. V. Antonova, “New accuracy estimates for methods for localizing
discontinuity lines of a noisy function”, Num. Anal. Appl., 13:4 (2020), 293–305
A. L. Ageev, T. V. Antonova, “O lokalizatsii negladkikh linii razryva funktsii dvukh peremennykh”, Tr. IMM UrO RAN, 25, no. 3, 2019, 9–23
A. L. Ageev, T. V. Antonova, “On the problem of global localization of discontinuity lines for a function of two variables”, Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S1–S12