Abstract:
We construct and study methods for localizing (determining the location) a line in whose neighborhood the function of two variables in question is smooth while having discontinuity of the first kind along the line. Instead of the exact function, an approximation in $L_2$ is available with a known noise level. This problem belongs to the class of ill-posed nonlinear problems and, in order to solve it, we have to construct regularizing algorithms. We propose a simplified theoretical approach to the problem of discontinuity line localization for a noisy function with conditions on the exact function imposed in an arbirarily thin strip crossing the discontinuity line. We construct averaging methods and estimate the precision of localization for them.
Keywords:
ill-posed problem, regularizing algorithm, localization of singularities, discontinuity of the first kind.
Citation:
A. L. Ageev, T. V. Antonova, “Approximation of discontinuity lines of a noisy function of two variables”, Sib. Zh. Ind. Mat., 15:1 (2012), 3–13; J. Appl. Industr. Math., 6:3 (2012), 269–279
\Bibitem{AgeAnt12}
\by A.~L.~Ageev, T.~V.~Antonova
\paper Approximation of discontinuity lines of a~noisy function of two variables
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/sjim705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112331}
\transl
\jour J. Appl. Industr. Math.
\yr 2012
\vol 6
\issue 3
\pages 269--279
\crossref{https://doi.org/10.1134/S1990478912030015}
Linking options:
https://www.mathnet.ru/eng/sjim705
https://www.mathnet.ru/eng/sjim/v15/i1/p3
This publication is cited in the following 13 articles:
A. L. Ageev, T. V. Antonova, “A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S19–S31
A. L. Ageev, T. V. Antonova, “O lokalizatsii fraktalnykh linii razryva po zashumlennym dannym”, Izv. vuzov. Matem., 2023, no. 9, 27–44
A. L. Ageev, T. V. Antonova, “On the Localization of Fractal Lines of Discontinuity from Noisy Data”, Russ Math., 67:9 (2023), 23
A. L. Ageev, T. V. Antonova, “Approximation of the Normal to the Discontinuity Lines of a Noisy Function”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S12–S29
A. L. Ageev, T. V. Antonova, “New accuracy estimates for methods for localizing
discontinuity lines of a noisy function”, Num. Anal. Appl., 13:4 (2020), 293–305
A. L. Ageev, T. V. Antonova, “O lokalizatsii negladkikh linii razryva funktsii dvukh peremennykh”, Tr. IMM UrO RAN, 25, no. 3, 2019, 9–23
A. L. Ageev, T. V. Antonova, “On the problem of global localization of discontinuity lines for a function of two variables”, Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S1–S12
A. L. Ageev, T. V. Antonova, “High accuracy algorithms for approximation of discontinuity lines of a noisy function”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 1–11
A. L. Ageev, T. V. Antonova, “A discrete algorithm for the localization of lines of discontinuity of a two-variable function”, J. Appl. Industr. Math., 11:4 (2017), 463–471
A. L. Ageev, T. V. Antonova, “Discretization of a new method for localizing discontinuity lines of a noisy two-variable function”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 4–13
D. V. Kurlikovskii, A. L. Ageev, T. V. Antonova, “Research of a threshold (correlation) method and application for localization of singularities”, Sib. Electron. Math. Rep., 13 (2016), 829–848
A. L. Ageev, T. V. Antonova, “O diskretizatsii metodov lokalizatsii osobennostei zashumlennoi funktsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 3–13
A. L. Ageev, T. V. Antonova, “Methods for the approximating the discontinuity lines of a noisy function of two variables with countably many singularities”, J. Appl. Industr. Math., 9:3 (2015), 297–305