Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2012, Volume 15, Number 1, Pages 3–13 (Mi sjim705)  

This article is cited in 13 scientific papers (total in 13 papers)

Approximation of discontinuity lines of a noisy function of two variables

A. L. Ageev, T. V. Antonova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, RUSSIA
References:
Abstract: We construct and study methods for localizing (determining the location) a line in whose neighborhood the function of two variables in question is smooth while having discontinuity of the first kind along the line. Instead of the exact function, an approximation in $L_2$ is available with a known noise level. This problem belongs to the class of ill-posed nonlinear problems and, in order to solve it, we have to construct regularizing algorithms. We propose a simplified theoretical approach to the problem of discontinuity line localization for a noisy function with conditions on the exact function imposed in an arbirarily thin strip crossing the discontinuity line. We construct averaging methods and estimate the precision of localization for them.
Keywords: ill-posed problem, regularizing algorithm, localization of singularities, discontinuity of the first kind.
Received: 30.06.2011
English version:
Journal of Applied and Industrial Mathematics, 2012, Volume 6, Issue 3, Pages 269–279
DOI: https://doi.org/10.1134/S1990478912030015
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: A. L. Ageev, T. V. Antonova, “Approximation of discontinuity lines of a noisy function of two variables”, Sib. Zh. Ind. Mat., 15:1 (2012), 3–13; J. Appl. Industr. Math., 6:3 (2012), 269–279
Citation in format AMSBIB
\Bibitem{AgeAnt12}
\by A.~L.~Ageev, T.~V.~Antonova
\paper Approximation of discontinuity lines of a~noisy function of two variables
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/sjim705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112331}
\transl
\jour J. Appl. Industr. Math.
\yr 2012
\vol 6
\issue 3
\pages 269--279
\crossref{https://doi.org/10.1134/S1990478912030015}
Linking options:
  • https://www.mathnet.ru/eng/sjim705
  • https://www.mathnet.ru/eng/sjim/v15/i1/p3
  • This publication is cited in the following 13 articles:
    1. A. L. Ageev, T. V. Antonova, “A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S19–S31  mathnet  crossref  crossref  mathscinet  elib
    2. A. L. Ageev, T. V. Antonova, “O lokalizatsii fraktalnykh linii razryva po zashumlennym dannym”, Izv. vuzov. Matem., 2023, no. 9, 27–44  mathnet  crossref
    3. A. L. Ageev, T. V. Antonova, “On the Localization of Fractal Lines of Discontinuity from Noisy Data”, Russ Math., 67:9 (2023), 23  crossref
    4. A. L. Ageev, T. V. Antonova, “Approximation of the Normal to the Discontinuity Lines of a Noisy Function”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S12–S29  mathnet  crossref  crossref  isi  elib
    5. A. L. Ageev, T. V. Antonova, “New accuracy estimates for methods for localizing discontinuity lines of a noisy function”, Num. Anal. Appl., 13:4 (2020), 293–305  mathnet  crossref  crossref  isi
    6. A. L. Ageev, T. V. Antonova, “O lokalizatsii negladkikh linii razryva funktsii dvukh peremennykh”, Tr. IMM UrO RAN, 25, no. 3, 2019, 9–23  mathnet  crossref  elib
    7. A. L. Ageev, T. V. Antonova, “On the problem of global localization of discontinuity lines for a function of two variables”, Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S1–S12  mathnet  crossref  crossref  isi  elib
    8. A. L. Ageev, T. V. Antonova, “High accuracy algorithms for approximation of discontinuity lines of a noisy function”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 1–11  mathnet  crossref  crossref  isi  elib
    9. A. L. Ageev, T. V. Antonova, “A discrete algorithm for the localization of lines of discontinuity of a two-variable function”, J. Appl. Industr. Math., 11:4 (2017), 463–471  mathnet  crossref  crossref  elib
    10. A. L. Ageev, T. V. Antonova, “Discretization of a new method for localizing discontinuity lines of a noisy two-variable function”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 4–13  mathnet  crossref  crossref  mathscinet  isi  elib
    11. D. V. Kurlikovskii, A. L. Ageev, T. V. Antonova, “Research of a threshold (correlation) method and application for localization of singularities”, Sib. Electron. Math. Rep., 13 (2016), 829–848  crossref  isi
    12. A. L. Ageev, T. V. Antonova, “O diskretizatsii metodov lokalizatsii osobennostei zashumlennoi funktsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 3–13  mathnet  mathscinet  elib
    13. A. L. Ageev, T. V. Antonova, “Methods for the approximating the discontinuity lines of a noisy function of two variables with countably many singularities”, J. Appl. Industr. Math., 9:3 (2015), 297–305  mathnet  crossref  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:566
    Full-text PDF :209
    References:103
    First page:9
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025