Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2010, Volume 13, Number 4, Pages 375–386 (Mi sjvm413)  

This article is cited in 12 scientific papers (total in 12 papers)

New methods for localizing discontinuities of a noisy function

T. V. Antonova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: For a problem of localizing the singularities (discontinuities of the first kind) of a noisy function in Lp (1p<), new classes of regularizing methods are constructed. These methods determine the number of discontinuities and approximate their positions. Also, upper and lower bound of the localizing singularities and the separability threshold, is obtain. It is proved that the methods are order-optimal by accuracy as well as separability on some classes of functions with discontinuities.
Key words: ill-posed problems, localization of singularities, discontinuities of the first kind, regularizing method, separability threshold.
Received: 29.01.2010
Revised: 10.03.2010
English version:
Numerical Analysis and Applications, 2010, Volume 3, Issue 4, Pages 306–316
DOI: https://doi.org/10.1134/S1995423910040026
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: T. V. Antonova, “New methods for localizing discontinuities of a noisy function”, Sib. Zh. Vychisl. Mat., 13:4 (2010), 375–386; Num. Anal. Appl., 3:4 (2010), 306–316
Citation in format AMSBIB
\Bibitem{Ant10}
\by T.~V.~Antonova
\paper New methods for localizing discontinuities of a~noisy function
\jour Sib. Zh. Vychisl. Mat.
\yr 2010
\vol 13
\issue 4
\pages 375--386
\mathnet{http://mi.mathnet.ru/sjvm413}
\transl
\jour Num. Anal. Appl.
\yr 2010
\vol 3
\issue 4
\pages 306--316
\crossref{https://doi.org/10.1134/S1995423910040026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650336352}
Linking options:
  • https://www.mathnet.ru/eng/sjvm413
  • https://www.mathnet.ru/eng/sjvm/v13/i4/p375
  • This publication is cited in the following 12 articles:
    1. Qusay Muzaffar, David Levin, Michael Werman, “Approximating a Function with a Jump Discontinuity—The High-Noise Case”, AppliedMath, 4:2 (2024), 561  crossref
    2. V. I. Maksimov, Yu. S. Osipov, “On the identification of control failures by the dynamic regularization method”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S134–S146  mathnet  crossref  crossref  mathscinet  isi  elib
    3. A. L. Ageev, T. V. Antonova, “Estimates of characteristics of localization methods for discontinuities of the first kind of a noisy function”, J. Appl. Industr. Math., 13:1 (2019), 1–10  mathnet  crossref  crossref  elib
    4. A. L. Ageev, T. V. Antonova, “Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function”, Russian Math. (Iz. VUZ), 63:7 (2019), 1–11  mathnet  crossref  crossref  isi
    5. A. L. Ageev, T. V. Antonova, “Localization of boundaries for subsets of discontinuity points of noisy function”, Russian Math. (Iz. VUZ), 61:11 (2017), 10–15  mathnet  crossref  isi
    6. Kurlikovskii D.V. Ageev A.L. Antonova T.V., “Research of a Threshold (Correlation) Method and Application For Localization of Singularities”, Sib. Electron. Math. Rep., 13 (2016), 829–848  crossref  isi
    7. A. L. Ageev, T. V. Antonova, “O diskretizatsii metodov lokalizatsii osobennostei zashumlennoi funktsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 3–13  mathnet  mathscinet  elib
    8. Ageev A.L., Antonova T.V., “New Methods for the Localization of Discontinuities of the First Kind for Functions of Bounded Variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191  crossref  mathscinet  zmath  isi  elib  scopus
    9. A. L. Ageev, T. V. Antonova, “Approximation of discontinuity lines of a noisy function of two variables”, J. Appl. Industr. Math., 6:3 (2012), 269–279  mathnet  crossref  mathscinet
    10. A. L. Ageev, T. V. Antonova, “On the localization of singularities of the first kind for a function of bounded variation”, Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 13–25  mathnet  crossref  isi  elib
    11. T. V. Antonova, “Localization method for lines of discontinuity of approximately defined function of two variables”, Num. Anal. Appl., 5:4 (2012), 285–296  mathnet  crossref  elib
    12. A. L. Ageev, T. V. Antonova, “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. IMM UrO RAN, 17, no. 3, 2011, 30–45  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :99
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025