|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
C. Liaw, S. Treil, “Preservation of absolutely continuous spectrum for contractive operators”, Algebra i Analiz, 34:3 (2022), 232–251 ; St. Petersburg Math. J., 34:3 (2023), 483–496 |
|
2014 |
2. |
S. Treil, “A remark on the reproducing kernel thesis for Hankel operators”, Algebra i Analiz, 26:3 (2014), 180–189 ; St. Petersburg Math. J., 26:3 (2015), 479–485 |
2
|
|
2005 |
3. |
V. V. Peller, S. R. Treil, “Approximation by analytic operator functions. Factorizations and very badly approximable functions”, Algebra i Analiz, 17:3 (2005), 160–183 ; St. Petersburg Math. J., 17:3 (2006), 493–510 |
|
2000 |
4. |
T. A. Gillespi, S. Pott, S. R. Treil', A. L. Vol'berg, “The transfer method in estimates for vector Hankel operators”, Algebra i Analiz, 12:6 (2000), 178–193 ; St. Petersburg Math. J., 12:6 (2001), 1013–1024 |
7
|
|
1996 |
5. |
F. L. Nazarov, S. R. Treil', “The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis”, Algebra i Analiz, 8:5 (1996), 32–162 ; St. Petersburg Math. J., 8:5 (1997), 721–824 |
177
|
|
1995 |
6. |
S. R. Treil, A. L. Volberg, “Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator”, Algebra i Analiz, 7:6 (1995), 205–226 ; St. Petersburg Math. J., 7:6 (1996), 1017–1032 |
7
|
|
1990 |
7. |
S. R. Treil', “An inverse spectral problem for the modulus of the Hankel operator, and balanced realizations”, Algebra i Analiz, 2:2 (1990), 158–182 ; Leningrad Math. J., 2:2 (1991), 353–375 |
|
1989 |
8. |
S. R. Treil', “Hankel operators, embedding theorems and bases of co-invariant subspaces of the multiple shift operator”, Algebra i Analiz, 1:6 (1989), 200–234 ; Leningrad Math. J., 1:6 (1990), 1515–1548 |
4
|
9. |
V. I. Vasyunin, S. R. Treil', “The inverse spectral problem for the modulus of a Hankel operator”, Algebra i Analiz, 1:4 (1989), 54–66 ; Leningrad Math. J., 1:4 (1990), 859–870 |
|
1988 |
10. |
S. R. Treil', “Angles between co-invariant subspaces, and the operator corona problem. The Szökefalvi-Nagy problem”, Dokl. Akad. Nauk SSSR, 302:5 (1988), 1063–1068 ; Dokl. Math., 38:2 (1989), 394–399 |
2
|
|
1987 |
11. |
S. R. Treil', “Invertibility of a Toeplitz operator does not imply its
invertibility by the projection method”, Dokl. Akad. Nauk SSSR, 292:3 (1987), 563–567 |
12. |
S. R. Treil', “The resolvent of a Toeplitz operator may have arbitrary growth”, Zap. Nauchn. Sem. LOMI, 157 (1987), 175–177 |
1
|
|
1986 |
13. |
S. R. Treil', “A spatially compact system of eigenvectors forms a Riesz basis if
it is uniformly minimal”, Dokl. Akad. Nauk SSSR, 288:2 (1986), 308–312 |
1
|
14. |
S. R. Treil', “Vector variant of the Adamyan–Arov–Krein theorem”, Funktsional. Anal. i Prilozhen., 20:1 (1986), 85–86 ; Funct. Anal. Appl., 20:1 (1986), 74–76 |
1
|
15. |
S. R. Treil', “Extreme points of the unit ball of the operator Hardy space $H^\infty(E\to E_*)$”, Zap. Nauchn. Sem. LOMI, 149 (1986), 160–164 |
16. |
A. L. Vol'berg, S. R. Treil', “Imbedding theorems for invariant subspaces of backward shift operator.”, Zap. Nauchn. Sem. LOMI, 149 (1986), 38–51 |
9
|
|
1985 |
17. |
S. R. Treil', “Moduli of Hankel operators and a problem of V. V. Peller and S. V. Khrushchev”, Dokl. Akad. Nauk SSSR, 283:5 (1985), 1095–1099 |
18. |
S. R. Treil, “The Adamyan–Arov–Krein theorem: Vectorial variant”, Zap. Nauchn. Sem. LOMI, 141 (1985), 56–71 ; J. Soviet Math., 37:5 (1987), 1297–1306 |
19. |
S. R. Treil', “Moduli of Hankel operators and a problem of V. V. Peller and S. V. Khrushchev”, Zap. Nauchn. Sem. LOMI, 141 (1985), 39–55 ; J. Soviet Math., 37:5 (1987), 1287–1269 |
|
1984 |
20. |
S. R. Treil', “An operator approach to weighted norm inequalities for singular inegrals”, Zap. Nauchn. Sem. LOMI, 135 (1984), 150–174 |
|
1983 |
21. |
S. R. Treil, “A geometric approach to the weighted estimates of hilbert transforms”, Funktsional. Anal. i Prilozhen., 17:4 (1983), 90–91 ; Funct. Anal. Appl., 17:4 (1983), 319–321 |
1
|
|
|
|
1990 |
22. |
N. K. Nikol'skii, V. A. Tolokonnikov, S. R. Treil', “A. Böttcher, B. Silbermann. Analysis of Toeplitz Operators. Berlin: Akademie, 1989”, Algebra i Analiz, 2:5 (1990), 220–235 |
1
|
|
Organisations |
|
|
|
|