|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 38–51
(Mi znsl4925)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
Imbedding theorems for invariant subspaces of backward shift operator.
A. L. Vol'berg, S. R. Treil'
Abstract:
For subspaces $K_\theta^p=H^p\cap\theta\bar H^p_0$, $\theta$ being an inner function in the unit disc $\mathbb D$, we find conditions on a measure in $\operatorname{clos}\mathbb D$ ensuring the imbedding $K_\theta^p\subset L^p(\mu)$, $0<p<+\infty$. The main result claims that $K_\theta^p\subset L^p(\mu)$ if there are positive constants $\varepsilon$ and $c$ such that $\mu(\Delta)\leqslant c\cdot r_\Delta$ for every
disc $\Delta$ of radius $r_\Delta$ centered on $\mathbb T$ and such that $|\theta(z)|<\varepsilon$ for some $z\in\Delta$. Cohn's criterion for the imbedding $K_\theta^2\subset L^2(\mu)$ is obtained as a corollary. It is also shown that a necessary and sufficient condition for $K_\theta^p\subset L^p(\mu)$ must depend on $p$.
Citation:
A. L. Vol'berg, S. R. Treil', “Imbedding theorems for invariant subspaces of backward shift operator.”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 38–51
Linking options:
https://www.mathnet.ru/eng/znsl4925 https://www.mathnet.ru/eng/znsl/v149/p38
|
|