Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 149, Pages 38–51 (Mi znsl4925)  

This article is cited in 9 scientific papers (total in 9 papers)

Imbedding theorems for invariant subspaces of backward shift operator.

A. L. Vol'berg, S. R. Treil'
Full-text PDF (562 kB) Citations (9)
Abstract: For subspaces $K_\theta^p=H^p\cap\theta\bar H^p_0$, $\theta$ being an inner function in the unit disc $\mathbb D$, we find conditions on a measure in $\operatorname{clos}\mathbb D$ ensuring the imbedding $K_\theta^p\subset L^p(\mu)$, $0<p<+\infty$. The main result claims that $K_\theta^p\subset L^p(\mu)$ if there are positive constants $\varepsilon$ and $c$ such that $\mu(\Delta)\leqslant c\cdot r_\Delta$ for every disc $\Delta$ of radius $r_\Delta$ centered on $\mathbb T$ and such that $|\theta(z)|<\varepsilon$ for some $z\in\Delta$. Cohn's criterion for the imbedding $K_\theta^2\subset L^2(\mu)$ is obtained as a corollary. It is also shown that a necessary and sufficient condition for $K_\theta^p\subset L^p(\mu)$ must depend on $p$.
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. L. Vol'berg, S. R. Treil', “Imbedding theorems for invariant subspaces of backward shift operator.”, Investigations on linear operators and function theory. Part XV, Zap. Nauchn. Sem. LOMI, 149, "Nauka", Leningrad. Otdel., Leningrad, 1986, 38–51
Citation in format AMSBIB
\Bibitem{VolTre86}
\by A.~L.~Vol'berg, S.~R.~Treil'
\paper Imbedding theorems for invariant subspaces of backward shift operator.
\inbook Investigations on linear operators and function theory. Part~XV
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 149
\pages 38--51
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4925}
\zmath{https://zbmath.org/?q=an:0612.30032}
Linking options:
  • https://www.mathnet.ru/eng/znsl4925
  • https://www.mathnet.ru/eng/znsl/v149/p38
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024