Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1995, Volume 7, Issue 6, Pages 205–226 (Mi aa584)  

This article is cited in 7 scientific papers (total in 7 papers)

Research Papers

Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator

S. R. Treilab, A. L. Volbergcdb

a St. Petersburg State Univ., Dept. of Math., Staryi Petergof
b Department of Mathematics, Michigan State University
c St. Petersburg branch of V. A. Steklov Math. Inst.
d UFR de Math., Univ. Paul Sabatier, Toulouse
Full-text PDF (726 kB) Citations (7)
Abstract: In this paper we consider a new approach to weighted norm inequalities. This approach is based on weighted embedding theorems of Carleson type. When $p=2$ the boundedness of an embedding operator follows from a technical trick (the Vinogradov–Senichkin test) which amounts to “doubling” the kernel of this operator. We show how this approach enables us to prove the Hunt–Muckenhoupt–Wheeden and Sawyer theorems. We also formulate a necessary and sufficient condition for vector weighted boundedness of the Hubert transform (the matrix $A_2$-condition), which we have obtained using this approach.
Received: 15.05.1995
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. R. Treil, A. L. Volberg, “Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator”, Algebra i Analiz, 7:6 (1995), 205–226; St. Petersburg Math. J., 7:6 (1996), 1017–1032
Citation in format AMSBIB
\Bibitem{TreVol95}
\by S.~R.~Treil, A.~L.~Volberg
\paper Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator
\jour Algebra i Analiz
\yr 1995
\vol 7
\issue 6
\pages 205--226
\mathnet{http://mi.mathnet.ru/aa584}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1381983}
\zmath{https://zbmath.org/?q=an:0861.42006|0852.42006}
\transl
\jour St. Petersburg Math. J.
\yr 1996
\vol 7
\issue 6
\pages 1017--1032
Linking options:
  • https://www.mathnet.ru/eng/aa584
  • https://www.mathnet.ru/eng/aa/v7/i6/p205
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024