Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 3, Pages 180–189 (Mi aa1388)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

A remark on the reproducing kernel thesis for Hankel operators

S. Treil

Department of Mathematics, Brown University, 151 Thayer Str./Box 1917, Providence, RI, 02912, USA
Full-text PDF (175 kB) Citations (2)
References:
Abstract: A simple proof is given of the so-called reproducing kernel thesis for Hankel operators.
Keywords: Hankel operator, reproducing kernel thesis, Bonsall's theorem, Uchiyama's lemma.
Received: 10.10.2013
English version:
St. Petersburg Mathematical Journal, 2015, Volume 26, Issue 3, Pages 479–485
DOI: https://doi.org/10.1090/S1061-0022-2015-01347-2
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Treil, “A remark on the reproducing kernel thesis for Hankel operators”, Algebra i Analiz, 26:3 (2014), 180–189; St. Petersburg Math. J., 26:3 (2015), 479–485
Citation in format AMSBIB
\Bibitem{Tre14}
\by S.~Treil
\paper A remark on the reproducing kernel thesis for Hankel operators
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 3
\pages 180--189
\mathnet{http://mi.mathnet.ru/aa1388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289181}
\elib{https://elibrary.ru/item.asp?id=22834090}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 3
\pages 479--485
\crossref{https://doi.org/10.1090/S1061-0022-2015-01347-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357043800005}
Linking options:
  • https://www.mathnet.ru/eng/aa1388
  • https://www.mathnet.ru/eng/aa/v26/i3/p180
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025