Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 175–177 (Mi znsl5217)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

The resolvent of a Toeplitz operator may have arbitrary growth

S. R. Treil'
Full-text PDF (173 kB) Citations (1)
Abstract: Fix an arbitrary sequence $\{\lambda_n\}$ in the unit disc such that $\lim_n\lambda_n=1$ and any sequence $\{A_n\}$ of positive reals. Then there exists a continuous real $u$ on the unit circle such that the Toeplitz operator $T_\varphi$ (on the Hardy class $H^2$) with symbol $\varphi=e^{iu}$ satisfies
$$ \|(T_\varphi-\lambda_nI)^{-1}\|>A_n $$
Document Type: Article
UDC: 517.98
Language: Russian
Citation: S. R. Treil', “The resolvent of a Toeplitz operator may have arbitrary growth”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 175–177
Citation in format AMSBIB
\Bibitem{Tre87}
\by S.~R.~Treil'
\paper The resolvent of a~Toeplitz operator may have arbitrary growth
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 175--177
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5217}
Linking options:
  • https://www.mathnet.ru/eng/znsl5217
  • https://www.mathnet.ru/eng/znsl/v157/p175
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024