|
|
Publications in Math-Net.Ru |
Citations |
|
2020 |
1. |
N. N. Bogolyubov (Jr.), D. Prorok, A. K. Prikarpatskii, “Integrability Aspects of the Current Algebra Representation and the Factorized Quantum Nonlinear Schrödinger Type Dynamical Systems”, Fiz. Elem. Chast. Atom. Yadra, 51:4 (2020), 468 ; Phys. Part. Nucl., 51:4 (2020), 434–442 |
1
|
|
2019 |
2. |
Oksana Ye. Hentosh, Yarema A. Prikarpatsky, Denis Blackmore, Anatolij K. Prikarpatski, “Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics”, SIGMA, 15 (2019), 079, 20 pp. |
4
|
|
2018 |
3. |
Anatolij K. Prykarpatski, “On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems”, SIGMA, 14 (2018), 023, 15 pp. |
3
|
|
2017 |
4. |
A. K. Prikarpatski, N. N. Bogolyubov (Jr.), “The quantum charged particle self-interaction problem within the Fock many temporal and Feynman proper time paradigms”, Phys. Part. Nucl. Lett., 14:1 (2017), 87–101 |
|
2016 |
5. |
N. N. Bogolyubov (Jr.), D. Blackmore, A. K. Prikarpatskii, “The Lagrangian and Hamiltonian Aspects of the Electrodynamic Vacuum-Field Theory Models”, BJMP, 2:2 (2016), 105–196 |
6. |
A. K. Prykarpatsky, N. N. Bogolubov, Jr., “On the classical Maxwell–Lorentz Electrodynamics, the electron inertia problem, and the feynman proper time paradigm”, Ukr. J. Phys., 61:3 (2016), 187–212 |
3
|
|
2015 |
7. |
N. N. Bogolubov Jr., A. K. Prykarpatski, D. Blackmore, “Maxwell–Lorentz electrodinamics revisited via the Lagrangian formalism and Feynman proper time paradigm”, Mathematics, 3:2 (2015), 190–257 |
4
|
|
2014 |
8. |
D. Blackmore, Ya. A. Prikarpatsky, N. N. Bogolyubov (Jr.), A. K. Prikarpatski, “Integrability of and differential–algebraic structures for spatially 1D hydrodynamical systems of Riemann type”, Chaos Solitons Fractals, 59 (2014), 59–81 |
13
|
|
2013 |
9. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatsky, “A current algebra approach to the equilibrium classical statistical mechanics and its applications”, Cond. Matt. Phys., 16:2 (2013), 23702–13 |
1
|
|
2012 |
10. |
A. K. Prikarpatsky, N. N. Bogolyubov (Jr.), “The Maxwell electromagnetic equations and the Lorentz type force derivation-the Feynman approach legacy”, Internat. J. Theoret. Phys., 51:1 (2012), 237–245 |
5
|
|
2010 |
11. |
Jołanta Golenia, Maxim V. Pavlov, Ziemowit Popowicz, Anatoliy K. Prykarpatsky, “On a Nonlocal Ostrovsky–Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability”, SIGMA, 6 (2010), 002, 13 pp. |
21
|
|
2009 |
12. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, U. Taneri, “The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry”, TMF, 160:2 (2009), 249–269 ; Theoret. and Math. Phys., 160:2 (2009), 1079–1095 |
10
|
|
1990 |
13. |
N. N. Bogolyubov, I. V. Mykytyuk, A. K. Prikarpatskii, “Verma modules over the quantum Lie algebra of currents on the circle”, Dokl. Akad. Nauk SSSR, 314:2 (1990), 268–272 ; Dokl. Math., 42:2 (1991), 424–428 |
14. |
A. K. Prikarpatskii, N. N. Bogolyubov, “A bilocal periodic problem for Sturm–Liouville and Dirac differential operators, and some applications in the theory of nonlinear dynamical systems”, Dokl. Akad. Nauk SSSR, 310:1 (1990), 29–32 ; Dokl. Math., 41:1 (1990), 21–25 |
|
1988 |
15. |
A. K. Prikarpatskii, P. I. Kalenyuk, “Gibbs representations of the Lie algebra of currents, and the complete system of N. N. Bogolyubov quantum functional equations in equilibrium statistical mechanics”, Dokl. Akad. Nauk SSSR, 300:2 (1988), 346–349 ; Dokl. Math., 33:5 (1988), 338–339 |
16. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics”, TMF, 75:1 (1988), 3–17 ; Theoret. and Math. Phys., 75:1 (1988), 329–339 |
4
|
|
1986 |
17. |
A. M. Kurbatov, A. K. Prikarpatskii, S. V. Chelomei, “Complete integrability of dynamical systems associated with a problem of nonlinear vibrations of a longitudinally compressed beam”, Dokl. Akad. Nauk SSSR, 290:2 (1986), 304–308 |
18. |
Yu. A. Mitropol'skii, A. K. Prikarpatskii, V. G. Samoilenko, “An asymptotic method for constructing implectic and recursion operators of completely integrable dynamic systems”, Dokl. Akad. Nauk SSSR, 287:6 (1986), 1312–1317 |
19. |
A. K. Prikarpatskii, “A gradient algorithm for construction of criteria for integrability of nonlinear dynamical systems”, Dokl. Akad. Nauk SSSR, 287:4 (1986), 827–832 |
20. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Complete integrability of the nonlinear ito and Benney–Kaup systems: Gradient algorithm and lax representation”, TMF, 67:3 (1986), 410–425 ; Theoret. and Math. Phys., 67:3 (1986), 586–596 |
10
|
21. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Bogolyubov generating functional method in statistical mechanics and the analog of the transformation to collective variables”, TMF, 66:3 (1986), 463–480 ; Theoret. and Math. Phys., 66:3 (1986), 305–317 |
2
|
|
1985 |
22. |
N. N. Bogolyubov, A. K. Prikarpatskii, “The quantum Wigner operator and the method of Bogolyubov generating functionals in nonequilibrium statistical physics”, Dokl. Akad. Nauk SSSR, 285:6 (1985), 1365–1370 |
23. |
A. K. Prikarpatskii, “Bogoliubov generating functional method in the statistical physic and the
transformation analog to the collective variables in a great canonical ensemble”, Dokl. Akad. Nauk SSSR, 285:5 (1985), 1096–1101 |
24. |
N. N. Bogolyubov, A. K. Prikarpatskii, V. G. Samoilenko, “Dynamical systems of Neumann type and their complete integrability”, Dokl. Akad. Nauk SSSR, 285:4 (1985), 853–857 |
25. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko, “Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability”, TMF, 65:2 (1985), 271–284 ; Theoret. and Math. Phys., 65:2 (1985), 1154–1164 |
5
|
|
1982 |
26. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Inverse periodic problem for the discrete approximation of the Schrödinger nonlinear equation”, Dokl. Akad. Nauk SSSR, 262:5 (1982), 1103–1108 |
2
|
27. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, V. G. Samoilenko, “Discrete periodic problem for the modified nonlinear Korteweg–de Vries equation”, TMF, 50:1 (1982), 118–126 ; Theoret. and Math. Phys., 50:1 (1982), 75–81 |
8
|
|
1981 |
28. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, V. G. Samoilenko, “Discrete periodic problem for a modified nonlinear Korteweg-de Vries equation”, Dokl. Akad. Nauk SSSR, 258:3 (1981), 575–580 |
29. |
A. K. Prikarpatskii, “Almost periodic solutions of a modified nonlinear Schrödinger equation”, TMF, 47:3 (1981), 323–332 ; Theoret. and Math. Phys., 47:3 (1981), 487–493 |
12
|
30. |
A. K. Prikarpatskii, “Geometrical structure and Bäcklund transformations of nonlinear evolution equations possessing a Lax representation”, TMF, 46:3 (1981), 382–393 ; Theoret. and Math. Phys., 46:3 (1981), 249–256 |
8
|
|
1980 |
31. |
A. K. Prikarpatskii, “On an analogue of the Bäcklund transformation for Riccati ordinary differential equations”, Dokl. Akad. Nauk SSSR, 253:2 (1980), 298–301 |
1
|
32. |
A. K. Prikarpatskii, “On Riccati equations integrable in quadratures”, Dokl. Akad. Nauk SSSR, 251:5 (1980), 1072–1077 |
3
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|