Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 67, Number 3, Pages 410–425 (Mi tmf5087)  

This article is cited in 11 scientific papers (total in 11 papers)

Complete integrability of the nonlinear ito and Benney–Kaup systems: Gradient algorithm and lax representation

N. N. Bogolyubov (Jr.), A. K. Prikarpatskii
References:
Abstract: A new gradient-holonomic approach to the construction of integrability criteria for nonlinear dynamical systems is described for the example of the nonlinear hydrodynamic equations in the mechanics of Ito and of Benney and Kaup.
Received: 17.10.1985
English version:
Theoretical and Mathematical Physics, 1986, Volume 67, Issue 3, Pages 586–596
DOI: https://doi.org/10.1007/BF01028694
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Complete integrability of the nonlinear ito and Benney–Kaup systems: Gradient algorithm and lax representation”, TMF, 67:3 (1986), 410–425; Theoret. and Math. Phys., 67:3 (1986), 586–596
Citation in format AMSBIB
\Bibitem{BogPri86}
\by N.~N.~Bogolyubov (Jr.), A.~K.~Prikarpatskii
\paper Complete integrability of the nonlinear ito and Benney--Kaup systems: Gradient algorithm and lax representation
\jour TMF
\yr 1986
\vol 67
\issue 3
\pages 410--425
\mathnet{http://mi.mathnet.ru/tmf5087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=858812}
\zmath{https://zbmath.org/?q=an:0623.35061}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 67
\issue 3
\pages 586--596
\crossref{https://doi.org/10.1007/BF01028694}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986F672900007}
Linking options:
  • https://www.mathnet.ru/eng/tmf5087
  • https://www.mathnet.ru/eng/tmf/v67/i3/p410
  • This publication is cited in the following 11 articles:
    1. Lixiu Wang, Jihong Wang, Yangjie Jia, “Prolongation Structure of a Development Equation and Its Darboux Transformation Solution”, Mathematics, 13:6 (2025), 921  crossref
    2. Anatolij K. Prykarpatski, Victor A. Bovdi, Myroslava I. Vovk, Petro Ya. Pukach, “On parametric generalizations of the Kardar-Parisi-Zhang equation and their integrability”, J. Phys.: Conf. Ser., 2667:1 (2023), 012043  crossref
    3. Anatolij Prykarpatski, Petro Pukach, Myroslava Vovk, “Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability”, Entropy, 25:2 (2023), 308  crossref
    4. Anatolij K. Prykarpatski, Petro Ya. Pukach, Myroslava I. Kopych, Trends in Mathematics, Geometric Methods in Physics XXXIX, 2023, 233  crossref
    5. Anatolij K. Prykarpatski, “Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems”, Universe, 8:5 (2022), 288  crossref
    6. Anatolij K. Prykarpatski, “On symmetry analysis of differential systems on functional manifolds”, Journal of Mathematical Analysis and Applications, 490:2 (2020), 124326  crossref
    7. D. Blackmore, A. K. Prykarpatsky, E. Özçağ, K. Soltanov, “Integrability Analysis of a Two-Component Burgers-Type Hierarchy”, Ukr Math J, 67:2 (2015), 167  crossref
    8. Ivanov, R, “Two-component integrable systems modelling shallow water waves: The constant vorticity case”, Wave Motion, 46:6 (2009), 389  crossref  isi
    9. Tsuchida, T, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I”, Journal of Physics A-Mathematical and General, 38:35 (2005), 7691  crossref  isi
    10. N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics”, Theoret. and Math. Phys., 75:1 (1988), 329–339  mathnet  crossref  mathscinet  zmath  isi
    11. V. K. Krivoshchekov, A. A. Slavnov, L. O. Chekhov, “Effective Lagrangian for supersymmetric quantum chromodynamics and the problem of dynamical breaking of supersymmetry”, Theoret. and Math. Phys., 72:1 (1987), 686–693  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:574
    Full-text PDF :183
    References:95
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025