Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 75, Number 1, Pages 3–17(Mi tmf4523)
This article is cited in 4 scientific papers (total in 4 papers)
Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics
Abstract:
A new and extremely important property of the algebraic structure of
symmetries of nonlinear infinite-dimensional integrable Hamiltonian
dynamical systems is described. It is that their invariance groups
are isomorphic to a unique universal Banach Lie group of currents
G=I⊙diff(Tn) on an n-dimensional torus Tn. Applications of this phenomenon to the problem of constructing general criteria of
integrability of nonlinear dynamical systems of theoretical and
mathematical physics are considered.
Citation:
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics”, TMF, 75:1 (1988), 3–17; Theoret. and Math. Phys., 75:1 (1988), 329–339
\Bibitem{BogPri88}
\by N.~N.~Bogolyubov (Jr.), A.~K.~Prikarpatskii
\paper Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics
\jour TMF
\yr 1988
\vol 75
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/tmf4523}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=955663}
\zmath{https://zbmath.org/?q=an:0657.35120}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 75
\issue 1
\pages 329--339
\crossref{https://doi.org/10.1007/BF01017166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U172800001}
Linking options:
https://www.mathnet.ru/eng/tmf4523
https://www.mathnet.ru/eng/tmf/v75/i1/p3
This publication is cited in the following 4 articles:
Anatolij K. Prykarpatski, “Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems”, Universe, 8:5 (2022), 288
Denis Blackmore, Yarema Prykarpatsky, Mykola M. Prytula, Denys Dutykh, Anatolij K. Prykarpatski, “On the integrability of a new generalized Gurevich-Zybin dynamical system, its Hunter-Saxton type reduction and related mysterious symmetries”, Anal.Math.Phys., 12:2 (2022)
Yu. O. Mitropol'skii, A. K. Prikarpats'kii, B. M. Fil', “Some aspects of a gradient holonomic algorithm in the theory of integrability of nonlinear dynamic systems and computer algebra problems”, Ukr Math J, 43:1 (1991), 63
A Roy Chowdhury, D C Sen, “On the Kac-Moody algebra of symmetries for a KdV equation in three dimensions”, J. Phys. A: Math. Gen., 23:20 (1990), L1061