Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 47, Number 3, Pages 323–332 (Mi tmf2385)  

This article is cited in 12 scientific papers (total in 12 papers)

Almost periodic solutions of a modified nonlinear Schrödinger equation

A. K. Prikarpatskii
References:
Abstract: A periodic variant of the inverse scattering technique is used to find explicitly almost periodic solutions of a modified nonlinear Schrödinger equation.
Received: 03.03.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 47, Issue 3, Pages 487–493
DOI: https://doi.org/10.1007/BF01019299
Bibliographic databases:
Language: Russian
Citation: A. K. Prikarpatskii, “Almost periodic solutions of a modified nonlinear Schrödinger equation”, TMF, 47:3 (1981), 323–332; Theoret. and Math. Phys., 47:3 (1981), 487–493
Citation in format AMSBIB
\Bibitem{Pri81}
\by A.~K.~Prikarpatskii
\paper Almost periodic solutions of a~modified nonlinear Schr\"odinger equation
\jour TMF
\yr 1981
\vol 47
\issue 3
\pages 323--332
\mathnet{http://mi.mathnet.ru/tmf2385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=630173}
\zmath{https://zbmath.org/?q=an:0468.35010|0478.35009}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 47
\issue 3
\pages 487--493
\crossref{https://doi.org/10.1007/BF01019299}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MX63700003}
Linking options:
  • https://www.mathnet.ru/eng/tmf2385
  • https://www.mathnet.ru/eng/tmf/v47/i3/p323
  • This publication is cited in the following 12 articles:
    1. Chen J., “Quasi-Periodic Solutions to the Mixed Kaup-Newell Hierarchy”, Z. Naturfors. Sect. A-J. Phys. Sci., 73:7 (2018), 579–593  crossref  isi
    2. Xianguo Geng, Zhu Li, Bo Xue, Liang Guan, “Explicit quasi-periodic solutions of the Kaup–Newell hierarchy”, Journal of Mathematical Analysis and Applications, 425:2 (2015), 1097  crossref
    3. Bernatska, J, “On separation of variables for integrable equations of soliton type”, Journal of Nonlinear Mathematical Physics, 14:3 (2007), 345  crossref  isi
    4. Y. Charles Li, “Strange Tori of the Derivative Nonlinear Schrödinger Equation”, Lett Math Phys, 80:1 (2007), 83  crossref
    5. Xianguo Geng, Ting Su, “Discrete coupled derivative nonlinear Schrödinger equations and their quasi-periodic solutions”, J. Phys. A: Math. Theor., 40:3 (2007), 433  crossref
    6. Alexander A. Zabolotskii, “Dense configuration of solitons in resonant four-wave mixing”, Phys. Rev. A, 50:4 (1994), 3384  crossref
    7. T. Hada, Springer Series in Nonlinear Dynamics, Nonlinear Processes in Physics, 1993, 169  crossref
    8. T. Hada, R. L. Hamilton, C. F. Kennel, “The soliton transform and a possible application to nonlinear Alfvén waves in space”, Geophysical Research Letters, 20:9 (1993), 779  crossref
    9. R. L. Hamilton, C. F. Kennel, E. Mjølhus, Springer Series in Nonlinear Dynamics, Nonlinear Processes in Physics, 1993, 175  crossref
    10. E. R. Tracy, H. H. Chen, “Nonlinear self-modulation: An exactly solvable model”, Phys. Rev. A, 37:3 (1988), 815  crossref
    11. N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko, “Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability”, Theoret. and Math. Phys., 65:2 (1985), 1154–1164  mathnet  crossref  mathscinet  zmath  isi
    12. N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, V. G. Samoilenko, “Discrete periodic problem for the modified nonlinear Korteweg–de Vries equation”, Theoret. and Math. Phys., 50:1 (1982), 75–81  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :156
    References:90
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025