|
Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 65, Number 2, Pages 271–284
(Mi tmf5099)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko
Abstract:
A method is proposed for finding Lax type representations for nonlinear evolution
(one-dimensional) equations of mathematical physics. It is shown that the Schrödinger type
nonlinear model $\psi_t-i\psi_{xx}+2|\psi|^2\psi_x=0$ admits a Lax-type representation
and is a Hamiltonian completely integrable dynamical system. Exact quasiperiodic
(finite-gap, i.e having only a finite number of stability bands in its spectrum)
solutions of this system are obtained in terms of Riemann theta functions.
Received: 26.12.1984
Citation:
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko, “Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability”, TMF, 65:2 (1985), 271–284; Theoret. and Math. Phys., 65:2 (1985), 1154–1164
Linking options:
https://www.mathnet.ru/eng/tmf5099 https://www.mathnet.ru/eng/tmf/v65/i2/p271
|
Statistics & downloads: |
Abstract page: | 531 | Full-text PDF : | 157 | References: | 72 | First page: | 2 |
|