Kharakterizatsii funktsionalnykh prostranstv Nikolskogo–Besova i Lizorkina–Tribelya smeshannoi gladkosti // Trudy MI im. V. A. Steklova RAN, 2003, t. 243, s. 53–65.
Phi-Transform characterization of the Nikol'skii–Besov and Lizorkin–Triebel function spaces with mixed smoothness // East J. Approx., 2004, v. 10, nos. 1–2, p. 119–131.
Razlichnye predstavleniya i ekvivalentnye normirovki prostranstv Nikolskogo–Besova i Lizorkina–Tribelya obobschennoi smeshannoi gladkosti // Doklady RAN, 2005, t. 402, # 3, s. 1–5.
Ekvivalentnye (kvazi)normirovki dlya nekotorykh prostranstv obobschennoi smeshannoi gladkosti // Trudy MI im. V. A. Steklova RAN, 2005, t. 248, s. 24–37.
Sh. A. Balgimbayeva, D. B. Bazarkhanov, “Optimal cubature formulas for Morrey type function classes on multidimensional torus”, Eurasian Math. J., 15:3 (2024), 25–37
2021
2.
D. B. Bazarkhanov, “Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables”, Trudy Mat. Inst. Steklova, 312 (2021), 22–42; Proc. Steklov Inst. Math., 312 (2021), 16–36
2019
3.
D. B. Bazarkhanov, “Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. II”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 15–30
2018
4.
D. B. Bazarkhanov, “Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018), 57–79
2017
5.
D. B. Bazarkhanov, “($L_p$–$L_q$)-Boundedness of Pseudodifferential Operators on the $n$-Dimensional Torus”, Mat. Zametki, 102:6 (2017), 938–942; Math. Notes, 102:6 (2017), 873–877
D. B. Bazarkhanov, “The $L_p$-Boundedness of Some Classes of Pseudo-Differential Operators on the $m$-Dimensional Torus”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 64–80; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S80–S97
D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Trudy Mat. Inst. Steklova, 293 (2016), 8–42; Proc. Steklov Inst. Math., 293 (2016), 2–36
D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Trudy Mat. Inst. Steklova, 284 (2014), 8–37; Proc. Steklov Inst. Math., 284 (2014), 2–31
D. B. Bazarkhanov, “Estimates of the Fourier Widths of Classes of Nikolskii–Besov and Lizorkin–Triebel Types of Periodic Functions of Several Variables”, Mat. Zametki, 87:2 (2010), 305–308; Math. Notes, 87:2 (2010), 281–284
D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Trudy Mat. Inst. Steklova, 269 (2010), 8–30; Proc. Steklov Inst. Math., 269 (2010), 2–24
D. B. Bazarkhanov, “Equivalent (Quasi)Norms for Certain Function Spaces of Generalized Mixed Smoothness”, Trudy Mat. Inst. Steklova, 248 (2005), 26–39; Proc. Steklov Inst. Math., 248 (2005), 21–34
D. B. Bazarkhanov, “Characterizations of the Nikol'skii–Besov and Lizorkin–Triebel Function Spaces of Mixed Smoothness”, Trudy Mat. Inst. Steklova, 243 (2003), 53–65; Proc. Steklov Inst. Math., 243 (2003), 46–58
D. B. Bazarkhanov, “Approximation of certain classes of smooth periodic functions of several variables by means of interpolation splines defined over a uniform net”, Mat. Zametki, 57:6 (1995), 917–919; Math. Notes, 57:6 (1995), 646–648
1991
16.
D. B. Bazarkhanov, “Best quadrature formulas for improper integrals on certain classes of differentiable functions”, Mat. Zametki, 49:6 (1991), 132–134; Math. Notes, 49:6 (1991), 645–647