Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 312, Pages 22–42
DOI: https://doi.org/10.4213/tm4153
(Mi tm4153)
 

This article is cited in 1 scientific paper (total in 1 paper)

Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables

D. B. Bazarkhanov

Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science of the Republic of Kazakhstan, Pushkina Str. 125, Almaty, 050010, Kazakhstan
Full-text PDF (336 kB) Citations (1)
References:
Abstract: We establish sharp order estimates for the error of optimal cubature formulas on the Nikol'skii–Besov and Lizorkin–Triebel type spaces, $B^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$ and $L^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$, respectively, for a number of relations between the parameters $s$, $p$, $q$, and $\mathtt {m}$ ($s=(s_1,\dots ,s_n)\in \mathbb R^n_+$, $1\leq p,q\leq \infty $, $\mathtt {m}=(m_1,\dots ,m_n)\in \mathbb N ^n$, $m=m_1+\dots +m_n$). Lower estimates are proved via Bakhvalov's method. Upper estimates are based on Frolov's cubature formulas.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan АР05133257
The work was supported by the Ministry of Education and Science, Republic of Kazakhstan, under grant AP05133257.
Received: August 12, 2020
Revised: September 4, 2020
Accepted: October 8, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 312, Pages 16–36
DOI: https://doi.org/10.1134/S0081543821010028
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: D. B. Bazarkhanov, “Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 22–42; Proc. Steklov Inst. Math., 312 (2021), 16–36
Citation in format AMSBIB
\Bibitem{Baz21}
\by D.~B.~Bazarkhanov
\paper Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 22--42
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4153}
\crossref{https://doi.org/10.4213/tm4153}
\elib{https://elibrary.ru/item.asp?id=46854892}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 16--36
\crossref{https://doi.org/10.1134/S0081543821010028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108783146}
Linking options:
  • https://www.mathnet.ru/eng/tm4153
  • https://doi.org/10.4213/tm4153
  • https://www.mathnet.ru/eng/tm/v312/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025