Abstract:
We obtain characterizations (and prove the corresponding equivalence of norms) of function spaces Bsmpq(Ik) and Lsmpq(Ik) of Nikol'skii–Besov and Lizorkin–Triebel types, respectively, in terms of representations of functions in these spaces by Fourier series with respect to a multiple system WIm of Meyer wavelets and in terms of sequences of the Fourier coefficients with respect to this system. We establish order-sharp estimates for the approximation of functions in Bsmpq(Ik) and Lsmpq(Ik) by special partial sums of these series in the metric of Lr(Ik) for a number of relations between the parameters s,p,q,r, and m (s=(s1,…,sn)∈Rn+, 1≤p,q,r≤∞, m=(m1,…,mn)∈Nn, k=m1+⋯+mn, and I=R or T). In the periodic case, we study the Fourier widths of these function classes.
Citation:
D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 8–30; Proc. Steklov Inst. Math., 269 (2010), 2–24
\Bibitem{Baz10}
\by D.~B.~Bazarkhanov
\paper Wavelet approximation and Fourier widths of classes of periodic functions of several variables.~I
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 8--30
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2904}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729970}
\zmath{https://zbmath.org/?q=an:1219.42025}
\elib{https://elibrary.ru/item.asp?id=15109748}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 2--24
\crossref{https://doi.org/10.1134/S0081543810020021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281705900002}
\elib{https://elibrary.ru/item.asp?id=15367530}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956636115}
Linking options:
https://www.mathnet.ru/eng/tm2904
https://www.mathnet.ru/eng/tm/v269/p8
This publication is cited in the following 14 articles:
G. A. Akishev, “O poryadkakh $n$-chlennykh priblizhenii funktsii mnogikh peremennykh v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 3–19
D. B. Bazarkhanov, “Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables”, Proc. Steklov Inst. Math., 312 (2021), 16–36
D. B. Bazarkhanov, “Lineinoe vosstanovlenie psevdodifferentsialnykh operatorov na klassakh gladkikh funktsii na m-mernom tore. II”, Tr. IMM UrO RAN, 25, no. 4, 2019, 15–30
D. B. Bazarkhanov, “Lineinoe vosstanovlenie psevdodifferentsialnykh operatorov na klassakh gladkikh funktsii na m-mernom tore. I”, Tr. IMM UrO RAN, 24, no. 4, 2018, 57–79
Balgimbayeva Sh.A., “Hyperbolic Cross Approximation With Respect to Wavelet System With Compact Supports”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer Inst Physics, 2017, UNSP 030005
Nadiia Derevianko, Vitalii Myroniuk, Jürgen Prestin, “Characterization of Local Besov Spaces via Wavelet Basis Expansions”, Front. Appl. Math. Stat., 3 (2017)
Sholpan A. Balgimbayeva, Springer Proceedings in Mathematics & Statistics, 216, Functional Analysis in Interdisciplinary Applications, 2017, 23
Dauren B. Bazarkhanov, Springer Proceedings in Mathematics & Statistics, 216, Functional Analysis in Interdisciplinary Applications, 2017, 32
D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Proc. Steklov Inst. Math., 293 (2016), 2–36
Sh. A. Balgimbaeva, T. I. Smirnov, “Otsenki poperechnikov Fure klassov periodicheskikh funktsii so smeshannym modulem gladkosti”, Tr. IMM UrO RAN, 21, no. 4, 2015, 78–94
D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Proc. Steklov Inst. Math., 284 (2014), 2–31
Hansen M. Sickel W., “Best M-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness-the Case of Compact Embeddings”, Constr. Approx., 36:1 (2012), 1–51
Bazarkhanov D.B., “Wavelet Approximation and Fourier Widths of Classes of Periodic Functions of Several Variables. II”, Anal. Math., 38:4 (2012), 249–289
D. B. Bazarkhanov, “Estimates for the widths of classes of periodic functions of several variables – I”, Eurasian Math. J., 1:3 (2010), 11–26