Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 269, Pages 8–30 (Mi tm2904)  

This article is cited in 14 scientific papers (total in 14 papers)

Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I

D. B. Bazarkhanov

Institute of Mathematics, Almaty, Kazakhstan
References:
Abstract: We obtain characterizations (and prove the corresponding equivalence of norms) of function spaces $\mathbf B^{sm}_{pq}(\mathbb I^k)$ and $\mathbf L^{sm}_{pq}(\mathbb I^k)$ of Nikol'skii–Besov and Lizorkin–Triebel types, respectively, in terms of representations of functions in these spaces by Fourier series with respect to a multiple system $\mathcal W^\mathbb I_m$ of Meyer wavelets and in terms of sequences of the Fourier coefficients with respect to this system. We establish order-sharp estimates for the approximation of functions in $B^{sm}_{pq}(\mathbb I^k)$ and $L^{sm}_{pq}(\mathbb I^k)$ by special partial sums of these series in the metric of $L_r(\mathbb I^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$, and $\mathbb I= \mathbb R$ or $\mathbb T$). In the periodic case, we study the Fourier widths of these function classes.
Received in January 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 269, Pages 2–24
DOI: https://doi.org/10.1134/S0081543810020021
Bibliographic databases:
Document Type: Article
UDC: 517.518.224+517.518.837
Language: Russian
Citation: D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 8–30; Proc. Steklov Inst. Math., 269 (2010), 2–24
Citation in format AMSBIB
\Bibitem{Baz10}
\by D.~B.~Bazarkhanov
\paper Wavelet approximation and Fourier widths of classes of periodic functions of several variables.~I
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 8--30
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2904}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729970}
\zmath{https://zbmath.org/?q=an:1219.42025}
\elib{https://elibrary.ru/item.asp?id=15109748}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 2--24
\crossref{https://doi.org/10.1134/S0081543810020021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281705900002}
\elib{https://elibrary.ru/item.asp?id=15367530}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956636115}
Linking options:
  • https://www.mathnet.ru/eng/tm2904
  • https://www.mathnet.ru/eng/tm/v269/p8
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025