Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 243, Pages 53–65 (Mi tm420)  

This article is cited in 14 scientific papers (total in 14 papers)

Characterizations of the Nikol'skii–Besov and Lizorkin–Triebel Function Spaces of Mixed Smoothness

D. B. Bazarkhanov

Institute of Mathematics and Mechanics, Kazakhstan National Academy of Sciences
References:
Abstract: The Nikol'skii–Besov and Lizorkin–Triebel function spaces of mixed positive smoothness are characterized in terms of fairly general (including local) averages and Peetre maximal functions. Atomic decompositions for functions from these spaces are also obtained.
Received in March 2003
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: D. B. Bazarkhanov, “Characterizations of the Nikol'skii–Besov and Lizorkin–Triebel Function Spaces of Mixed Smoothness”, Function spaces, approximations, and differential equations, Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS, Trudy Mat. Inst. Steklova, 243, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 53–65; Proc. Steklov Inst. Math., 243 (2003), 46–58
Citation in format AMSBIB
\Bibitem{Baz03}
\by D.~B.~Bazarkhanov
\paper Characterizations of the Nikol'skii--Besov and Lizorkin--Triebel Function Spaces of Mixed Smoothness
\inbook Function spaces, approximations, and differential equations
\bookinfo Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS
\serial Trudy Mat. Inst. Steklova
\yr 2003
\vol 243
\pages 53--65
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm420}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2049462}
\zmath{https://zbmath.org/?q=an:1090.46025}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 243
\pages 46--58
Linking options:
  • https://www.mathnet.ru/eng/tm420
  • https://www.mathnet.ru/eng/tm/v243/p53
  • This publication is cited in the following 14 articles:
    1. D. B. Bazarkhanov, “Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables”, Proc. Steklov Inst. Math., 312 (2021), 16–36  mathnet  crossref  crossref  isi  elib
    2. Van Kien Nguyen, “Gelfand Numbers of Embeddings of Mixed Besov Spaces”, J. Complex., 41 (2017), 35–57  crossref  mathscinet  zmath  isi  scopus
    3. Van Kien Nguyen, “Weyl and Bernstein numbers of embeddings of Sobolev spaces with dominating mixed smoothness”, J. Complex., 36 (2016), 46–73  crossref  mathscinet  zmath  isi  scopus
    4. Van Kien Nguyen, Sickel W., “Weyl Numbers of Embeddings of Tensor Product Besov Spaces”, J. Approx. Theory, 200 (2015), 170–220  crossref  mathscinet  zmath  isi  scopus
    5. Van Kien Nguyen, “Bernstein Numbers of Embeddings of Isotropic and Dominating Mixed Besov Spaces”, Math. Nachr., 288:14-15 (2015), 1694–1717  crossref  mathscinet  zmath  isi  scopus
    6. Hansen M. Sickel W., “Best M-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness-the Case of Compact Embeddings”, Constr. Approx., 36:1 (2012), 1–51  crossref  mathscinet  zmath  isi  elib  scopus
    7. Ullrich T., “Continuous Characterizations of Besov-Lizorkin-Triebel Spaces and New Interpretations as Coorbits”, J. Funct. Space Appl., 2012, 163213  crossref  mathscinet  zmath  isi  scopus
    8. Rauhut H., Ullrich T., “Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type”, J Funct Anal, 260:11 (2011), 3299–3362  crossref  mathscinet  zmath  isi  scopus
    9. D. B. Bazarkhanov, “Estimates of the Fourier Widths of Classes of Nikolskii–Besov and Lizorkin–Triebel Types of Periodic Functions of Several Variables”, Math. Notes, 87:2 (2010), 281–284  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Proc. Steklov Inst. Math., 269 (2010), 2–24  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    11. A. I. Parfenov, “A criterion for straightening a Lipschitz surface in the Lizorkin–Triebel sense. III”, Siberian Adv. Math., 21:2 (2011), 100–129  mathnet  crossref  mathscinet
    12. Hansen M., Vybiral J., “The Jawerth–Franke Embedding of Spaces with Dominating Mixed Smoothness”, Georgian Mathematical Journal, 16:4 (2009), 667–682  crossref  mathscinet  zmath  isi
    13. Vybiral J., Sickel W., “Traces of functions with a dominating mixed derivative in R–3”, Czechoslovak Mathematical Journal, 57:4 (2007), 1239–1273  crossref  mathscinet  zmath  isi  scopus
    14. D. B. Bazarkhanov, “Equivalent (Quasi)Norms for Certain Function Spaces of Generalized Mixed Smoothness”, Proc. Steklov Inst. Math., 248 (2005), 21–34  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:633
    Full-text PDF :190
    References:94
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025