|
This article is cited in 9 scientific papers (total in 9 papers)
Nonlinear trigonometric approximations of multivariate function classes
D. B. Bazarkhanov Institute of Mathematics and Mathematical Modeling, ul. Pushkina 125, Almaty, 050010 Kazakhstan
Abstract:
Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.
Received: December 2, 2015
Citation:
D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 8–42; Proc. Steklov Inst. Math., 293 (2016), 2–36
Linking options:
https://www.mathnet.ru/eng/tm3702https://doi.org/10.1134/S0371968516020023 https://www.mathnet.ru/eng/tm/v293/p8
|
|