Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 8–42
DOI: https://doi.org/10.1134/S0371968516020023
(Mi tm3702)
 

This article is cited in 9 scientific papers (total in 9 papers)

Nonlinear trigonometric approximations of multivariate function classes

D. B. Bazarkhanov

Institute of Mathematics and Mathematical Modeling, ul. Pushkina 125, Almaty, 050010 Kazakhstan
Full-text PDF (417 kB) Citations (9)
References:
Abstract: Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan 5130/ГФ4
5129/ГФ4
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan, project nos. 5130/GF4 and 5129/GF4.
Received: December 2, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 2–36
DOI: https://doi.org/10.1134/S0081543816040027
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 8–42; Proc. Steklov Inst. Math., 293 (2016), 2–36
Citation in format AMSBIB
\Bibitem{Baz16}
\by D.~B.~Bazarkhanov
\paper Nonlinear trigonometric approximations of multivariate function classes
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 8--42
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3702}
\crossref{https://doi.org/10.1134/S0371968516020023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628468}
\elib{https://elibrary.ru/item.asp?id=26344467}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 2--36
\crossref{https://doi.org/10.1134/S0081543816040027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979986923}
Linking options:
  • https://www.mathnet.ru/eng/tm3702
  • https://doi.org/10.1134/S0371968516020023
  • https://www.mathnet.ru/eng/tm/v293/p8
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024