01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date:
11.11.1945
Keywords:
hyperbolic systems,
energy integrals,
stability of strong discontinuities,
numerical analysis,
mathematical modelling in continuum mechanics,
Sobolev-type system,
weakened solution,
local- and global-in-time existence,
Lyapunov's asymptotic stability,
stabilization method.
Subject:
The local (short-time) theorem on the existence and uniqueness of the classical solution to the quasilinear system of gas dynamics behind a shock wave was proved. The stability of strong discontinuities in different mathematical models of continuum mechanics was studied. The method of lines for gas dynamics was worked out and justified.
Biography
Graduated from Faculty of Mathematics and Mechanics of Novosibirsk State University (NSU) in 1970 (department of hydrodynamics and gas dynamics). Ph.D. thesis was defended in 1975. D.Sci. thesis was defended in 1984. A list of my works contains more than 100 titles, including 15 monographs. I lead the research seminar at NSU "Theoretical and computational problems in mathematical physics.
Main publications:
Blokhin A. M., Romano V., Trakhinin Yu. L. Stability of shock waves in relativistic radiation hydrodynamics // Ann. Inst. H. Poincare Phys. Theor. 67(1997), no. 2, 145–180.
Blokhin A. M., Trakhinin Yu. L. Stability of strong discontinuities in fluids and MHD // In: Handbook of Mathematical Fluid Dynamics, vol. 1 (S. Friedlander, D. Serre, eds.), Elsevier, 2002.
A. M. Blokhin, R. E. Semenko, “Search for stationary Poiseuille flows for an incompressible polymer fluid in channels with perforated walls”, Prikl. Mekh. Tekh. Fiz., 63:1 (2022), 33–41; J. Appl. Mech. Tech. Phys., 63:1 (2022), 26–63
A. M. Blokhin, D. L. Tkachev, “Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls”, Mat. Sb., 213:3 (2022), 3–20; Sb. Math., 213:3 (2022), 283–299
A. M. Blokhin, B. V. Semisalov, “Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method”, Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022), 305–319; Comput. Math. Math. Phys., 62:2 (2022), 302–315
A. M. Blokhin, R. E. Semenko, “Studying of the relations on the flat strong discontinuity for the polymeric liquid”, Matem. Mod., 33:1 (2021), 89–104; Math. Models Comput. Simul., 13:5 (2021), 798–809
5.
A. M. Blokhin, D. L. Tkachev, “Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости”, Mat. Tr., 24:1 (2021), 35–51
A. M. Blokhin, R. E. Semenko, A. S. Rudometova, “Magnetohydrodynamic vortex motion of an incompressible polymeric fluid”, Sib. Zh. Ind. Mat., 24:1 (2021), 5–17; J. Appl. Industr. Math., 15:1 (2021), 7–16
A. M. Blokhin, R. E. Semenko, “Stationary “von Karman” vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid”, Matem. Mod., 32:7 (2020), 3–23; Math. Models Comput. Simul., 13:2 (2021), 181–194
8.
A. M. Blokhin, A. S. Rudometova, D. L. Tkachev, “An MHD model of an incompressible polymeric fluid:
linear instability of a steady state”, Sib. Zh. Ind. Mat., 23:3 (2020), 16–30; J. Appl. Industr. Math., 14:3 (2020), 430–442
9.
A. M. Blokhin, B. V. Semisalov, “Simulation of the stationary nonisothermal MHD flows of polymeric fluids in channels with interior heating elements”, Sib. Zh. Ind. Mat., 23:2 (2020), 17–40; J. Appl. Industr. Math., 14:2 (2020), 222–241
A. M. Blokhin, A. Yu. Goldin, “Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid”, Sib. Zh. Ind. Mat., 23:1 (2020), 16–27; J. Appl. Industr. Math., 14:1 (2020), 9–19
11.
A. M. Blokhin, D. L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Mat. Sb., 211:7 (2020), 3–23; Sb. Math., 211:7 (2020), 901–921
A. M. Blokhin, A. Yu. Goldin, “Symmetrization of MHD equations of incompressible viscoelastic polymer fluid”, Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020), 873–883; Comput. Math. Math. Phys., 60:5 (2020), 853–863
13.
A. M. Blokhin, R. E. Semenko, “On linear instability of the state of rest of an incompressible polymer fluid in the presence of strong discontinuity”, Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020), 687–699; Comput. Math. Math. Phys., 60:4 (2020), 673–685
2019
14.
A. M. Blokhin, R. E. Semenko, “To the stability of a plane strong discontinuity with a polymer fluid flow through it with allowance for anisotropy”, Zh. Vychisl. Mat. Mat. Fiz., 59:10 (2019), 1752–1768; Comput. Math. Math. Phys., 59:10 (2019), 1693–1709
2018
15.
A. M. Blokhin, A. Yu. Goldin, “On the linear instability of incompressible polymeric liquid flows with strong discontinuity”, Zhurnal Tekhnicheskoi Fiziki, 88:10 (2018), 1506–1514; Tech. Phys., 63:10 (2018), 1459–1467
16.
A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Asymptotic formula for the spectrum of the linear problem describing periodic polymer flows in the infinite channel”, Prikl. Mekh. Tekh. Fiz., 59:6 (2018), 39–51; J. Appl. Mech. Tech. Phys., 59:6 (2018), 992–1003
A. M. Blokhin, R. E. Semenko, “Incompressible polymer fluid flow past a flat wedge”, Prikl. Mekh. Tekh. Fiz., 59:1 (2018), 39–48; J. Appl. Mech. Tech. Phys., 59:1 (2018), 32–40
A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Local solvability of the problem of the van der Waals gas flow around an infinite plane wedge in the case of a weak shock wave”, Sibirsk. Mat. Zh., 59:6 (2018), 1214–1239; Siberian Math. J., 59:6 (2018), 960–982
A. M. Blokhin, R. E. Semenko, “Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 41–54
A. M. Blokhin, E. A. Kruglova, B. V. Semisalov, “Estimation of two error components in the numerical solution to the problem of nonisothermal flow of polymer fluid between two coaxial cylinders”, Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018), 1147–1163; Comput. Math. Math. Phys., 58:7 (2018), 1099–1115
A. M. Blokhin, A. V. Yegitov, D. L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018), 108–122; Comput. Math. Math. Phys., 58:1 (2018), 102–117
A. M. Blokhin, A. S. Rudometova, “Stationary currents of a weakly conducting incompressible polymeric fluid between coaxial cylinders”, Sib. Zh. Ind. Mat., 20:4 (2017), 13–21; J. Appl. Industr. Math., 11:4 (2017), 486–493
A. M. Blokhin, R. E. Semenko, “Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity”, Sib. J. Pure and Appl. Math., 17:2 (2017), 3–12; J. Math. Sci., 231:2 (2018), 143–152
A. M. Blokhin, R. E. Semenko, “Linear instability of the state of rest for an incompressible polymer liquid upon injection from the cathode and heating from the top”, Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017), 1831–1843; Comput. Math. Math. Phys., 57:11 (2017), 1796–1807
25.
A. M. Blokhin, E. A. Kruglova, B. V. Semisalov, “Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders”, Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017), 1184–1197; Comput. Math. Math. Phys., 57:7 (2017), 1181–1193
A. M. Blokhin, A. Yu. Goldin, “Construction of intermediate regions for a generalized van der Waals gas”, Zhurnal Tekhnicheskoi Fiziki, 86:12 (2016), 49–55; Tech. Phys., 61:12 (2016), 1813–1820
A. M. Blokhin, B. V. Semisalov, A. S. Shevchenko, “Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid”, Matem. Mod., 28:10 (2016), 3–22
A. M. Blokhin, D. L. Tkachev, “Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave”, Mat. Tr., 19:2 (2016), 3–41; Siberian Adv. Math., 27:2 (2017), 77–102
29.
A. M. Blokhin, R. E. Semenko, “On one model of a vortex motion of an incompressible polymeric fluid in the axial zone”, Sib. Zh. Ind. Mat., 19:1 (2016), 52–61; J. Appl. Industr. Math., 10:1 (2016), 69–77
A. M. Blokhin, A. Yu. Goldin, “On linear stability of an incompressible polymer liquid at rest”, Sib. J. Pure and Appl. Math., 16:4 (2016), 17–27; J. Math. Sci., 230:1 (2018), 14–24
A. M. Blokhin, A. S. Rudometova, “Stationary solutions to the equations describing the nonisothermic electrical convection of a weak-conductive incompressible polymeric fluid”, Sib. Zh. Ind. Mat., 18:1 (2015), 3–13; J. Appl. Industr. Math., 9:2 (2015), 147–156
A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Linear instability of the solutions in mathematical model that describe flows of polymer in an infinite channel”, Yakutian Mathematical Journal, 22:2 (2015), 16–27
33.
A. M. Blokhin, R. E. Semenko, “The flow of incompressible polymeric fluid between two coaxial cilinders”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:4 (2015), 24–34; J. Math. Sci., 221:6 (2017), 798–807
34.
A. M. Blokhin, A. V. Yegitov, D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015), 850–875; Comput. Math. Math. Phys., 55:5 (2015), 848–873
A. M. Blokhin, B. V. Semisalov, “Numerical solution of a charge transport problem in DG-MOSFET”, Matem. Mod., 26:8 (2014), 126–148
36.
A. M. Blokhin, B. V. Semisalov, “A stationary flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section”, Sib. Zh. Ind. Mat., 17:4 (2014), 38–47; J. Appl. Industr. Math., 9:1 (2015), 18–26
A. M. Blokhin, D. L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, Sib. Zh. Ind. Mat., 17:3 (2014), 13–25; J. Appl. Industr. Math., 8:4 (2014), 467–478
N. V. Bambaeva, A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 845–870; Comput. Math. Math. Phys., 54:5 (2014), 845–870
A. M. Blokhin, N. V. Bambaeva, “The symmetrization of the equations of incompressible viscoelastic polymeric fluid”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013), 24–31; J. Math. Sci., 203:4 (2014), 436–443
A. M. Blokhin, B. V. Semisalov, “On an algorithm for finding the electric potential distribution in the DG-MOSFET transistor”, Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013), 979–1003; Comput. Math. Math. Phys., 53:6 (2013), 798–822
I. N. Kiselev, B. V. Semisalov, E. A. Biberdorf, R. N. Sharipov, A. M. Blokhin, F. A. Kolpakov, “Modular Modeling of the Human Cardiovascular System”, Mat. Biolog. Bioinform., 7:2 (2012), 703–736
A. M. Blokhin, A. S. Bychkov, V. O. Myakishev, “Numerical analysis of the realizability of the conditions of neutral stability for shock waves in the problem of a flow past a wedge by a van der Waals gas”, Sib. Zh. Ind. Mat., 15:4 (2012), 51–63; J. Appl. Industr. Math., 7:2 (2013), 131–141
A. M. Blokhin, D. L. Tkachev, “Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients”, Zh. Vychisl. Mat. Mat. Fiz., 52:10 (2012), 1866–1882; Comput. Math. Math. Phys., 52:10 (2012), 1428–1444
2011
44.
A. M. Blokhin, B. V. Semisalov, R. E. Semenko, “The numerical investigation of parametrical instability in layered structures”, Matem. Mod., 23:6 (2011), 81–97
45.
N. V. Bambaeva, A. M. Blokhin, “About the Question of $t$-Hyperbolicity of a Nonstationary System, Describing Flows of Polymeric Mediums”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:2 (2011), 3–14; J. Math. Sci., 188:4 (2013), 333–343
A. M. Blokhin, D. L. Tkachev, “Justification of the stabilization method for a mathematical model of charge transport in semiconductors”, Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011), 1495–1517; Comput. Math. Math. Phys., 51:8 (2011), 1395–1417
2010
47.
A. M. Blokhin, A. S. Ibragimova, “On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel”, Matem. Mod., 22:9 (2010), 79–94; Math. Models Comput. Simul., 3:2 (2011), 245–256
A. M. Blokhin, I. A. Anufriev, “The well-posedness of the linearized problem of a supersonic stream over a wedge under arbitrary perturbations”, Sib. Zh. Ind. Mat., 13:1 (2010), 3–17; J. Appl. Industr. Math., 4:4 (2010), 475–489
50.
A. M. Blokhin, A. S. Ibragimova, B. V. Semisalov, “Construction of numerical algorithms for the ballistic diode problem”, Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010), 188–208; Comput. Math. Math. Phys., 50:1 (2010), 180–200
A. M. Blokhin, A. S. Ibragimova, B. V. Semisalov, “Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors”, Matem. Mod., 21:4 (2009), 15–34
A. M. Blokhin, D. L. Tkachev, “Stability of a supersonic flow about a wedge with weak shock wave”, Mat. Sb., 200:2 (2009), 3–30; Sb. Math., 200:2 (2009), 157–184
A. M. Blokhin, S. A. Boyarskiy, B. V. Semisalov, “On an Approach to the Construction of Difference Schemes for the Momentum Equations of Charge Transport in Semiconductors”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009), 3–15
54.
A. M. Blokhin, R. E. Semenko, “Stability of the Layered Systems at the Presence of the Electric Current”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:1 (2009), 24–34
2008
55.
A. M. Blokhin, R. E. Semenko, “On the Stability of the Shock Waves at the Presence of the Electric Current”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008), 26–50
A. M. Blokhin, E. V. Ovechkin, “The construction of modified symmetrizer for a single class of symmetrical systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007), 9–28
A. M. Blokhin, M. B. Dukenova, “Shock waves in neutron medium”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:1 (2005), 3–14
2002
58.
A. M. Blokhin, A. A. Kargapol'tseva, “Asymptotic stability of the equilibrium state in the case of constant doping density”, Sib. Zh. Ind. Mat., 5:1 (2002), 3–7
2000
59.
A. M. Blokhin, A. A. Shirnen, “On the stability of shock waves”, Sib. Zh. Ind. Mat., 3:2 (2000), 23–28
60.
A. M. Blokhin, A. A. Shirnen, “On the stability of shock waves for some models of continuum mechanics”, Sib. Zh. Ind. Mat., 3:1 (2000), 33–46
61.
A. M. Blokhin, A. S. Dushmanova, “Asymptotical stability of an equilibrium for the gasdynamical model of carrier transport in semiconductors”, Sibirsk. Mat. Zh., 41:4 (2000), 744–757; Siberian Math. J., 41:4 (2000), 614–625
A. M. Blokhin, A. S. Dushmanova, “Asymptotic stability of the equilibrium state for a simplified gas dynamic model of charge transport in semiconductors”, Sib. Zh. Ind. Mat., 2:2 (1999), 15–23
63.
A. M. Blokhin, A. D. Birkin, “Global solvability of the piston problem”, Sib. Zh. Ind. Mat., 2:1 (1999), 13–24
64.
A. M. Blokhin, I. G. Sokovikov, “On an approach to the construction of difference schemes for quasilinear equations of gas dynamics”, Sibirsk. Mat. Zh., 40:6 (1999), 1236–1243; Siberian Math. J., 40:6 (1999), 1044–1050
A. M. Blokhin, A. A. Iordanidi, “Stability of the equilibrium state for a hydrodynamic model of charge transport in semiconductors”, Sibirsk. Mat. Zh., 40:5 (1999), 1012–1022; Siberian Math. J., 40:5 (1999), 851–861
1998
66.
A. M. Blokhin, Yu. L. Trakhinin, I. Z. Merazhov, “On the stability of shock waves in a continuous medium with a space charge”, Prikl. Mekh. Tekh. Fiz., 39:2 (1998), 29–39; J. Appl. Mech. Tech. Phys., 39:2 (1998), 184–193
A. M. Blokhin, A. S. Dushmanova, “Investigation of the stability of the equilibrium state for a gas dynamic model of charge transport in semiconductors”, Sib. Zh. Ind. Mat., 1:1 (1998), 41–56
1997
68.
A. M. Blokhin, D. A. Krymskikh, “Numerical investigation of the hydrodynamic model equations of charge transport in semiconductors”, Matem. Mod., 9:3 (1997), 40–50
1996
69.
A. M. Blokhin, A. D. Birkin, “Global resolving of the problem of supersonic flow around a cone”, Matem. Mod., 8:4 (1996), 89–104
A. M. Blokhin, Yu. L. Trakhinin, “Shock-wave stability for one model of radiation hydrodynamics”, Prikl. Mekh. Tekh. Fiz., 37:6 (1996), 3–14; J. Appl. Mech. Tech. Phys., 37:6 (1996), 775–784
A. M. Blokhin, Yu. L. Trakhinin, “Symmetrization of a system of equations of radiative hydrodynamics, and global solvability of the Cauchy problem”, Sibirsk. Mat. Zh., 37:6 (1996), 1256–1265; Siberian Math. J., 37:6 (1996), 1101–1109
A. M. Blokhin, Yu. L. Trakhinin, “Stability of a fast magnetohydrodynamic shock wave in plasma with anisotropic pressure”, Prikl. Mekh. Tekh. Fiz., 36:4 (1995), 16–35; J. Appl. Mech. Tech. Phys., 36:4 (1995), 496–512
73.
A. M. Blokhin, A. D. Birkin, “Stability analysis of steady supersonic flow regimes past infinite wedge”, Prikl. Mekh. Tekh. Fiz., 36:2 (1995), 182–196; J. Appl. Mech. Tech. Phys., 36:2 (1995), 308–321
A. M. Blokhin, Yu. L. Trakhinin, “On stability of shock waves in magnetohydrodynamics with anisotropic pressure”, Sibirsk. Mat. Zh., 34:6 (1993), 10–22; Siberian Math. J., 34:6 (1993), 1005–1016
A. M. Blokhin, V. R. Tsimerman, “A study of a differential-difference model for a linear mixed problem of supersonic flow around a wedge”, Trudy Inst. Mat. SO RAN, 22 (1992), 43–55
80.
A. M. Blokhin, A. A. Pozdeev, V. R. Tsimerman, “The method of lines for equations of gas dynamics: theoretical justification and numerical experiments”, Trudy Inst. Mat. SO RAN, 22 (1992), 22–43
1990
81.
A. M. Blokhin, I. Yu. Druzhinin, E. V. Mishchenko, “Theory and computation of third-order aberrations of cathode systems”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 18 (1990), 3–75
82.
A. M. Blokhin, I. Yu. Druzhinin, “Well-posedness of some linear problems on the stability of strong discontinuities in magnetohydrodynamics”, Sibirsk. Mat. Zh., 31:2 (1990), 3–8; Siberian Math. J., 31:2 (1990), 187–191
A. M. Blokhin, R. D. Alaev, “Stability investigation for a certain explicit difference scheme”, Sibirsk. Mat. Zh., 31:1 (1990), 34–38; Siberian Math. J., 31:1 (1990), 26–30
A. M. Blokhin, I. Yu. Druzhinin, “Stability of shock waves in magnetohydrodynamics”, Sibirsk. Mat. Zh., 30:4 (1989), 13–29; Siberian Math. J., 30:4 (1989), 511–524
A. M. Blokhin, D. L. Tkachev, “A mixed problem for the wave equation in a domain with a corner (the scalar case)”, Sibirsk. Mat. Zh., 30:3 (1989), 16–23; Siberian Math. J., 30:3 (1989), 358–364
A. M. Blokhin, “Application of difference analogues of dissipative energy integrals to the investigation of the stability of difference schemes”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 11 (1988), 67–93
87.
A. M. Blokhin, “The well-posedness of a linear mixed problem on supersonic flow around a wedge”, Sibirsk. Mat. Zh., 29:5 (1988), 48–58; Siberian Math. J., 29:5 (1988), 726–734
A. M. Blokhin, “Uniqueness of the classical solution of a mixed problem for equations of gas dynamics with boundary conditions on a shock wave”, Sibirsk. Mat. Zh., 23:5 (1982), 17–30; Siberian Math. J., 23:5 (1982), 604–615
A. M. Blokhin, “Estimation of the energy integral of a mixed problem for gas dynamics equations with boundary conditions on the shock wave”, Sibirsk. Mat. Zh., 22:4 (1981), 23–51; Siberian Math. J., 22:4 (1981), 501–523