Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 2, Pages 157–184
DOI: https://doi.org/10.1070/SM2009v200n02ABEH003990
(Mi sm6363)
 

This article is cited in 14 scientific papers (total in 14 papers)

Stability of a supersonic flow about a wedge with weak shock wave

A. M. Blokhin, D. L. Tkachev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: It is known that the problem of finding the streamlines of a stationary supersonic flow of a nonviscous nonheat-conducting gas in thermodynamical equilibrium past an infinite plane wedge (with a sufficiently small angle at the vertex) in theory has two solutions: a strong shock wave solution (the velocity behind the front of the shock wave is subsonic) and a weak shock wave solution (the velocity behind the front of the shock wave is generally speaking supersonic). In the present paper it is shown for a linear approximation to this problem that the weak shock wave solution is asymptotically stable in the sense of Lyapunov. Moreover, it is shown that for initial data with compact support the solution of the mixed linear problem converges in finite time to the zero solution. In the case of linear approximation these results complete the verification of the well-known Courant-Friedrichs conjecture that the strong shock wave solution is unstable, whereas the weak shock wave solution is asymptotically stable in the sense of Lyapunov.
Bibliography: 39 titles.
Keywords: weak shock wave, asymptotic stability (in the sense of Lyapunov).
Received: 20.05.2008 and 26.11.2008
Bibliographic databases:
UDC: 517.956.3
MSC: 76J20, 34D20
Language: English
Original paper language: Russian
Citation: A. M. Blokhin, D. L. Tkachev, “Stability of a supersonic flow about a wedge with weak shock wave”, Sb. Math., 200:2 (2009), 157–184
Citation in format AMSBIB
\Bibitem{BloTka09}
\by A.~M.~Blokhin, D.~L.~Tkachev
\paper Stability of a~supersonic flow about a~wedge with weak shock wave
\jour Sb. Math.
\yr 2009
\vol 200
\issue 2
\pages 157--184
\mathnet{http://mi.mathnet.ru//eng/sm6363}
\crossref{https://doi.org/10.1070/SM2009v200n02ABEH003990}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503135}
\zmath{https://zbmath.org/?q=an:1162.76023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..157B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266224500006}
\elib{https://elibrary.ru/item.asp?id=19066105}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650909521}
Linking options:
  • https://www.mathnet.ru/eng/sm6363
  • https://doi.org/10.1070/SM2009v200n02ABEH003990
  • https://www.mathnet.ru/eng/sm/v200/i2/p3
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:957
    Russian version PDF:248
    English version PDF:13
    References:106
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024