Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 2, Pages 305–319
DOI: https://doi.org/10.31857/S0044466922020065
(Mi zvmmf11362)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical physics

Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method

A. M. Blokhinab, B. V. Semisalovab

a Novosibirsk State University, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Citations (2)
Abstract: Stabilization of flows of an incompressible viscoelastic polymeric fluid in a channel with a rectangular cross section under the action of a constant pressure drop is analyzed numerically. The flows are described within the Pokrovskii–Vinogradov rheological mesoscopic model. An algorithm for solving initial-boundary value problems for nonstationary equations of the model is developed. It uses spatial interpolations with Chebyshev nodes and implicit time integration scheme. It is shown analytically that, in the steady state, the model admits three highly smooth solutions. The question of which of these solutions is realized in practice is investigated by calculating the limit of the solutions of nonstationary equations. It is found that this limit coincides, with high accuracy, with one of the three solutions of the steady-state problem, and the values of parameters at which the switching from one of these solutions to another occurs are calculated.
Key words: polymeric fluid, mesoscopic rheological model, steady Poiseuille flow, method without saturation, switching of stabilized solution.
Funding agency Grant number
Russian Science Foundation 20-11-20036
This work was supported by the Russian Science Foundation (agreement no. 20-11-20036).
Received: 20.08.2020
Revised: 20.08.2020
Accepted: 17.09.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 2, Pages 302–315
DOI: https://doi.org/10.1134/S0965542522020051
Bibliographic databases:
Document Type: Article
UDC: 519.615
Language: Russian
Citation: A. M. Blokhin, B. V. Semisalov, “Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method”, Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022), 305–319; Comput. Math. Math. Phys., 62:2 (2022), 302–315
Citation in format AMSBIB
\Bibitem{BloSem22}
\by A.~M.~Blokhin, B.~V.~Semisalov
\paper Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 2
\pages 305--319
\mathnet{http://mi.mathnet.ru/zvmmf11362}
\crossref{https://doi.org/10.31857/S0044466922020065}
\elib{https://elibrary.ru/item.asp?id=47563745}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 2
\pages 302--315
\crossref{https://doi.org/10.1134/S0965542522020051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000767355700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85126250299}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11362
  • https://www.mathnet.ru/eng/zvmmf/v62/i2/p305
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025