Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 32, Issue 3, Pages 449–474
DOI: https://doi.org/10.1070/IM1989v032n03ABEH000776
(Mi im1189)
 

This article is cited in 17 scientific papers (total in 18 papers)

On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II

D. V. Anosov
References:
Abstract: This paper is a continuation of Part I (Izv. Akad. Nauk SSSR Ser. Mat., 1987, v. 51, № 1, p. 16–43; Math. USSR-Izv. 30 (1988), 15–38). Let $L$ be a (semi) infinite nonselfintersecting continuous curve on a closed surface of nonpositive Euler characteristic and consider the behavior at “infinity” of the curve obtained by lifting $\widetilde L$ to the universal cover: either the Lobachevsky or the Euclidean plane. The possible types of this behavior for arbitrary $\widetilde L$ turn out to be the same as those for $L$ which are semitrajectories of $C^\infty$ flows. Questions concerning the approach of to infinity along a definite direction are again considered. An example is constructed in which all points of the absolute are limit points in $\widetilde L$.
Bibliography: 12 titles.
Received: 16.06.1987
Bibliographic databases:
Document Type: Article
UDC: 517.91
MSC: Primary 58F25; Secondary 34C35, 34C40
Language: English
Original paper language: Russian
Citation: D. V. Anosov, “On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II”, Math. USSR-Izv., 32:3 (1989), 449–474
Citation in format AMSBIB
\Bibitem{Ano88}
\by D.~V.~Anosov
\paper On~the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~II
\jour Math. USSR-Izv.
\yr 1989
\vol 32
\issue 3
\pages 449--474
\mathnet{http://mi.mathnet.ru//eng/im1189}
\crossref{https://doi.org/10.1070/IM1989v032n03ABEH000776}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954292}
\zmath{https://zbmath.org/?q=an:0673.58039}
Linking options:
  • https://www.mathnet.ru/eng/im1189
  • https://doi.org/10.1070/IM1989v032n03ABEH000776
  • https://www.mathnet.ru/eng/im/v52/i3/p451
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:478
    Russian version PDF:138
    English version PDF:23
    References:99
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024