Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1988, Volume 30, Issue 1, Pages 15–38
DOI: https://doi.org/10.1070/IM1988v030n01ABEH000990
(Mi im1261)
 

This article is cited in 25 scientific papers (total in 27 papers)

On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. I

D. V. Anosov
References:
Abstract: Consider a flow on a surface $M$ of nonpositive Euler characteristic whose set of equilibrium points can be deformed, in $M$, to a point (this, for example, is the case if there are only finitely many equilibrium points). For such a flow, it is proved that the semitrajectory of the covering flow on the universal cover (the Euclidean or Lobachevsky plane) of $M$ is either bounded or tends to infinity in a definite direction. For analytic flows (but not for $C^\infty$-flows), this conclusion holds without any conditions on the equilibrium points.
Bibliography: 21 titles.
Received: 16.02.1986
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1987, Volume 51, Issue 1, Pages 16–43
Bibliographic databases:
Document Type: Article
UDC: 517.91
MSC: Primary 58F25; Secondary 34C35, 34C40
Language: English
Original paper language: Russian
Citation: D. V. Anosov, “On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. I”, Izv. Akad. Nauk SSSR Ser. Mat., 51:1 (1987), 16–43; Math. USSR-Izv., 30:1 (1988), 15–38
Citation in format AMSBIB
\Bibitem{Ano87}
\by D.~V.~Anosov
\paper On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~I
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1987
\vol 51
\issue 1
\pages 16--43
\mathnet{http://mi.mathnet.ru/im1261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=887599}
\zmath{https://zbmath.org/?q=an:0637.58025|0621.58032}
\transl
\jour Math. USSR-Izv.
\yr 1988
\vol 30
\issue 1
\pages 15--38
\crossref{https://doi.org/10.1070/IM1988v030n01ABEH000990}
Linking options:
  • https://www.mathnet.ru/eng/im1261
  • https://doi.org/10.1070/IM1988v030n01ABEH000990
  • https://www.mathnet.ru/eng/im/v51/i1/p16
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:496
    Russian version PDF:236
    English version PDF:16
    References:75
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024