Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 2, Pages 287–320
DOI: https://doi.org/10.1070/IM1995v059n02ABEH000012
(Mi im12)
 

This article is cited in 7 scientific papers (total in 8 papers)

On the behaviour in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. III

D. V. Anosov
References:
Abstract: This paper is related to the previous papers [1] and [2]. We fill a gap in the proof in [1] of the following alternative: under assumptions mentioned there, a semi-trajectory $\widetilde L$ of the covering flow on the universal covering plane is either bounded or tends to infinity with an asymptotic direction. For the torus, we prove under the same assumptions that in the second case the deviation of $\widetilde L$ from the line corresponding to this direction is bounded. We prove that for every (semi-)infinite non-self-intersecting $L$ on a closed surface and every $r>0$ there is a $C^\infty$-flow with an invariant measure having a specified $C^\infty$-smooth everywhere-positive density such that some positive semi-trajectory of the flow approximates $L$ up to $r$. (In [2] an analogous approximation assertion was proved, with no mention of an invariant measure.)
Received: 03.10.1994
Bibliographic databases:
Document Type: Article
MSC: 58F25
Language: English
Original paper language: Russian
Citation: D. V. Anosov, “On the behaviour in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. III”, Izv. Math., 59:2 (1995), 287–320
Citation in format AMSBIB
\Bibitem{Ano95}
\by D.~V.~Anosov
\paper On the behaviour in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~III
\jour Izv. Math.
\yr 1995
\vol 59
\issue 2
\pages 287--320
\mathnet{http://mi.mathnet.ru//eng/im12}
\crossref{https://doi.org/10.1070/IM1995v059n02ABEH000012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1337159}
\zmath{https://zbmath.org/?q=an:0902.58031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ88800003}
Linking options:
  • https://www.mathnet.ru/eng/im12
  • https://doi.org/10.1070/IM1995v059n02ABEH000012
  • https://www.mathnet.ru/eng/im/v59/i2/p63
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:396
    Russian version PDF:157
    English version PDF:34
    References:52
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024