Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 32, Issue 3, Pages 475–499
DOI: https://doi.org/10.1070/IM1989v032n03ABEH000777
(Mi im1190)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line

L. V. Kiseleva
References:
Abstract: Suppose $\varepsilon>0$ is an arbitrarily small fixed number,
$$ Y\geqslant Y_0(\varepsilon)>0,\quad H=Y^\varepsilon,\quad Y_1=Y^{\frac{11}{12}+\varepsilon},\quad Y\leqslant T\leqslant Y+Y_1. $$

Consider the relation
$$ N_0(T+H)-N_0(T)\geqslant cH\ln T, $$
where $c=c(\varepsilon)>0$ is a constant depending only on $\varepsilon$, and let $E$ denote the set of those $T$ in the interval $Y\leqslant T\leqslant Y+Y_1$ for which this relation does not hold. It is shown that the measure of this set satisfies $\mu(E)\leqslant Y_1Y^{-0.5\,\varepsilon}$.
Bibliography: 19 titles.
Received: 05.08.1986
Bibliographic databases:
UDC: 511
MSC: 11M26
Language: English
Original paper language: Russian
Citation: L. V. Kiseleva, “On the number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line”, Math. USSR-Izv., 32:3 (1989), 475–499
Citation in format AMSBIB
\Bibitem{Kis88}
\by L.~V.~Kiseleva
\paper On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line
\jour Math. USSR-Izv.
\yr 1989
\vol 32
\issue 3
\pages 475--499
\mathnet{http://mi.mathnet.ru//eng/im1190}
\crossref{https://doi.org/10.1070/IM1989v032n03ABEH000777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954293}
\zmath{https://zbmath.org/?q=an:0672.10027|0647.10027}
Linking options:
  • https://www.mathnet.ru/eng/im1190
  • https://doi.org/10.1070/IM1989v032n03ABEH000777
  • https://www.mathnet.ru/eng/im/v52/i3/p479
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024