|
This article is cited in 3 scientific papers (total in 3 papers)
On the number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line
L. V. Kiseleva
Abstract:
Suppose $\varepsilon>0$ is an arbitrarily small fixed number,
$$
Y\geqslant Y_0(\varepsilon)>0,\quad H=Y^\varepsilon,\quad Y_1=Y^{\frac{11}{12}+\varepsilon},\quad Y\leqslant T\leqslant Y+Y_1.
$$
Consider the relation
$$
N_0(T+H)-N_0(T)\geqslant cH\ln T,
$$
where $c=c(\varepsilon)>0$ is a constant depending only on $\varepsilon$, and let $E$ denote the set of those $T$ in the interval $Y\leqslant T\leqslant Y+Y_1$ for which this relation does not hold. It is shown that the measure of this set satisfies $\mu(E)\leqslant Y_1Y^{-0.5\,\varepsilon}$.
Bibliography: 19 titles.
Received: 05.08.1986
Citation:
L. V. Kiseleva, “On the number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line”, Math. USSR-Izv., 32:3 (1989), 475–499
Linking options:
https://www.mathnet.ru/eng/im1190https://doi.org/10.1070/IM1989v032n03ABEH000777 https://www.mathnet.ru/eng/im/v52/i3/p479
|
|