|
|
Публикации в базе данных Math-Net.Ru |
Цитирования |
|
2023 |
1. |
Ан. Г. Марчук, Е. Д. Москаленский, “Конфигурация очага, приводящая к концентрации волновой энергии цунами вокруг круглого острова”, Сиб. журн. вычисл. матем., 26:1 (2023), 77–92 |
|
2020 |
2. |
Ан. Г. Марчук, Е. Д. Москаленский, “Семейство решений двумерного уравнения эйконала”, Сиб. журн. вычисл. матем., 23:2 (2020), 155–164 ; An. G. Marchuk, E. D. Moskalensky, “A family of solutions of the two-dimensional
eikonal equation”, Num. Anal. Appl., 13:2 (2020), 127–135 |
|
2018 |
3. |
Е. Д. Москаленский, “Новые семейства точных решений двумерного уравнения эйконала для случая, когда скорость в среде зависит только от одной координаты”, Сиб. журн. вычисл. матем., 21:3 (2018), 259–271 ; E. D. Moskalensky, “The novel class of exact solutions of the two-dimensional eikonal equation when the velocity in a medium depends on one spatial coordinate”, Num. Anal. Appl., 11:3 (2018), 208–219 |
1
|
|
2014 |
4. |
Е. Д. Москаленский, “О нахождении точных решений двумерного уравнения эйконала для случая, когда фронт волны, распространяющейся в среде, является окружностью”, Сиб. журн. вычисл. матем., 17:4 (2014), 363–372 ; E. D. Moskalensky, “On finding exact solutions of the two-dimensional eikonal equation when the front of the wave propagating in a medium is a circle”, Num. Anal. Appl., 7:4 (2014), 304–313 |
|
2012 |
5. |
Е. Д. Москаленский, “Об изменении фронта плоской волны, проходящей через область, содержащую неоднородности”, Сиб. журн. вычисл. матем., 15:4 (2012), 387–392 ; E. D. Moskalensky, “On the evolution of wavefront of a plane wave passing through an area with heterogeneities”, Num. Anal. Appl., 5:4 (2012), 320–325 |
|
2011 |
6. |
Е. Д. Москаленский, “Формулы, задающие положение фронта волны, распространяющейся в среде со степенной зависимостью скорости от координаты”, Сиб. журн. вычисл. матем., 14:2 (2011), 169–178 ; E. D. Moskalensky, “Formulas for setting a location of the wavefront propagating in a medium with power dependence of velocity on a coordinate”, Num. Anal. Appl., 4:2 (2011), 136–144 |
|
2010 |
7. |
Е. Д. Москаленский, “О нахождении фронта волны, описываемой двумерным уравнением эйконала, для случая, когда скорость в среде зависит от одной пространственной координаты”, Сиб. журн. вычисл. матем., 13:1 (2010), 67–73 ; E. D. Moskalensky, “On detecting a wavefront described by 2D eikonal equation, when velocity in a medium depends on one spatial variable”, Num. Anal. Appl., 3:1 (2010), 52–58 |
3
|
|
2009 |
8. |
Е. Д. Москаленский, “О нахождении точных решений двумерного уравнения эйконала”, Сиб. журн. вычисл. матем., 12:2 (2009), 201–209 ; E. D. Moskalenskii, “Finding exact solutions to the two-dimensional eikonal equation”, Num. Anal. Appl., 2:2 (2009), 165–172 |
5
|
|
2007 |
9. |
Е. Д. Москаленский, “Об одном подходе к решению уравнения эйконала $f_x^2+f_y^2+f_z^2=\phi^2$”, Сиб. журн. вычисл. матем., 10:4 (2007), 361–370 |
|
|
|
2024 |
10. |
Е. Д. Москаленский, “Уравнение третьей степени: новый подход к решению, его преимущества и недостатки”, Матем. обр., 2024, № 1(109), 12–17 |
|