Персоналии
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
 
Кривский И Ю

В базах данных Math-Net.Ru
Публикаций: 7
Научных статей: 7

Статистика просмотров:
Эта страница:204
Страницы публикаций:2400
Полные тексты:1167
Списки литературы:317
E-mail:

https://www.mathnet.ru/rus/person20485
Список публикаций на Google Scholar
Список публикаций на ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/223546

Публикации в базе данных Math-Net.Ru Цитирования
2005
1. И. Ю. Кривский, Р. Р. Ломпей, В. М. Симулик, “О симметриях комплексного уравнения Дирака–Кэлера”, ТМФ, 143:1 (2005),  64–82  mathnet  mathscinet  zmath  elib; I. Yu. Krivsky, R. R. Lompay, V. M. Simulik, “Symmetries of the complex Dirac–Kähler equation”, Theoret. and Math. Phys., 143:1 (2005), 541–558  isi 6
1992
2. И. Ю. Кривский, В. М. Симулик, “Уравнение Дирака и представления спина 1, связь с симметриями уравнений Максвелла”, ТМФ, 90:3 (1992),  388–406  mathnet  mathscinet; I. Yu. Krivsky, V. M. Simulik, “Dirac equation and spin 1 representations, a connection with symmetries of the Maxwell equations”, Theoret. and Math. Phys., 90:3 (1992), 265–276  isi 8
1989
3. И. Ю. Кривский, В. М. Симулик, “Нётеровский анализ zilch-законов сохранения и их обобщений для электромагнитного поля. II. Привлечение пуанкаре-инвариантной формулировки принципа наименьшего действия”, ТМФ, 80:3 (1989),  340–352  mathnet  mathscinet; I. Yu. Krivsky, V. M. Simulik, “Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. II. Use of Poincaré-invariant formulation of the principle of least action”, Theoret. and Math. Phys., 80:3 (1989), 912–921  isi 8
4. И. Ю. Кривский, В. М. Симулик, “Нётеровский анализ “zilch”-законов сохранения и их обобщений для электромагнитного поля. I. Привлечение различных формулировок принципа наименьшего действия”, ТМФ, 80:2 (1989),  274–287  mathnet  mathscinet; I. Yu. Krivsky, V. M. Simulik, “Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. I. Use of different formulations of the principle of least action”, Theoret. and Math. Phys., 80:2 (1989), 864–874  isi 10
1979
5. И. Ю. Кривский, Ю. А. Ксаверий, “Унитарностная граница полного сечения и пе­реднего наклона амплитуды высоконеупругого $\pi N$-рассеяния”, ТМФ, 39:2 (1979),  195–204  mathnet; I. Yu. Krivsky, Yu. A. Ksaverii, “Unitarity bound on the total cross section and forward slope of the deep inelastic $\pi N$ scattering amplitude”, Theoret. and Math. Phys., 39:2 (1979), 408–414
1969
6. И. Ю. Кривский, Г. Д. Романко, В. И. Фущич, “Уравнения типа Кеммера–Дэффина в пятимерном пространстве Минковского”, ТМФ, 1:2 (1969),  242–250  mathnet  mathscinet; I. Yu. Krivsky, G. D. Romanko, W. I. Fushchych, “Kemmer–Duffin type equations in a five-dimensional Minkowski space”, Theoret. and Math. Phys., 1:2 (1969), 187–193 11
1967
7. Ю. М. Ломсадзе, И. Ю. Кривский, “О возможных формулировках принципа микропричинности и некоторых их следствиях”, Докл. АН СССР, 173:2 (1967),  312–315  mathnet

Организации
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024